Photosynthetica

, Volume 52, Issue 3, pp 421–429 | Cite as

Response of two tomato cultivars to field-applied proline under irrigation with saline water: Growth, chlorophyll fluorescence and nutritional aspects

  • B. Kahlaoui
  • M. Hachicha
  • S. Rejeb
  • M. N. Rejeb
  • B. Hanchi
  • E. Misle
Original Papers

Abstract

The response of tomato (Solanum lycopersicum L.) to abiotic stress has been widely investigated. Recent physiological studies focus on the use of osmoprotectants to ameliorate stress damage, but experiments at a field level are scarce. Two tomato cultivars were used for an experiment with saline water (6.57 dS m−1) and subsurface drip irrigation (SDI) in a silty clay soil. Rio Grande is a salinity-tolerant cultivar, while Heinz-2274 is the salt-sensitive cultivar. Exogenous application of proline was done by foliar spray at two concentrations (10 and 20 mg L−1) during the flowering stage. Control plants were treated with saline water without proline. Proline at the lower concentration (10 mg L−1) increased dry mass of different plant organs (leaves, stems, and roots) and it improved various chlorophyll a fluorescence parameters compared with controls. Regarding mineral nutrition, K+ and P were higher in different organs, while low accumulation of Na+ occurred. However, Mg2+ was very high in all tissues of Rio Grande at the higher concentration of proline applied. Thus, the foliar spray of proline at 10 mg L−1 increased the tolerance of both cultivars. The growth of aboveground biomass of Heinz-2274 was enhanced by 63.5%, while Rio Grande improved only by 38.9%.

Additional key words

chlorophyll fluorescence foliar pulverization proline salt tolerance Solanum lycopersicum Tunisia 

Abbreviations

Chl

chlorophyll

CK

control

DM

dry mass

ECw

electrical conductivity of water

Fm

maximal fluorescence in the dark-adapted leaves

Fm

maximal fluorescence in the light-adapted leaves

F0

minimal fluorescence in the dark-adapted leaves

Fs

steady-state fluorescence

Fv

maximal variable fluorescence in the dark-adapted leaves

Fv

maximal variable fluorescence in the light-adapted leaves

Fv/Fm

maximal efficiency of PSII photochemistry

Fv′/Fm

efficiency of excitation energy capture by open PSII reaction centers

NPQ

nonphotochemical quenching

ϕPSII

the quantum yield of PSII electron transport

PQ-pool

plastoquinone pool

Pro

proline

Pro10

proline concentration of 10 mg L−1

Pro20

proline concentration of 20 mg L−1

SAR

sodium adsorption ratio

ROS

reactive oxygen species

SC

salt-sensitive cultivar

SDI

subsurface drip irrigation

TC

salt-tolerant cultivar

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alia, A., Kondo, Y., Sakamoto, A. et al.: Enhanced tolerance to light stress of transgenic Arabidopsis plants that express the codA gene for a bacterial choline oxidase. — Plant Mol. Biol. 40: 279–288, 1999.Google Scholar
  2. Araus, J.L., Amaro, T., Voltas, J. et al.: Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. — Field Crop. Res. 55: 209–223, 1998.CrossRefGoogle Scholar
  3. Ashraf, M., Athar, H.R., Harris, P.J.C., Kwon, T.R.: Some prospective strategies for improving crop salt tolerance. — Adv. Agron. 97: 45–110, 2008.CrossRefGoogle Scholar
  4. Aziz, A., Martin-Tanguy, J., Larher, F.: Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. — Plant Sci. 145: 83–91, 1999.CrossRefGoogle Scholar
  5. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water-stress studies. — Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  6. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  7. Conka, L.N., Hanson, A.D.: Prokaryotic osmoregulation: genetics and physiology. — Annu. Rev. Microbiol. 45: 569–606, 1991.CrossRefGoogle Scholar
  8. Colom, M.R., Vazzana, C.: Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants. — Environ. Exp. Bot. 49: 135–144, 2003.CrossRefGoogle Scholar
  9. Demetriou, G., Neonaki, C.. Navakoudis., E., Kotzabasis, K.: Salt stress impact on the molecular structure and function of the photosynthetic apparatus -the protective role of polyamines. — Biochim. Biophys. Acta 1767: 272–280, 2007.CrossRefPubMedGoogle Scholar
  10. Efeoğlu, B., Ekmekçi, Y., Çiçek, N.: Physiological responses of three maize cultivars to drought stress and recovery. — S. Afr. J. Bot. 75: 34–42, 2009.CrossRefGoogle Scholar
  11. Fernandez, R.T., Perry, R.L., Flore, J.A.: Drought response of young three apple trees on three rootstocks. II. Gas exchange, chlorophyll fluorescence, water relations, and leaf abscisic acid. — J. Am. Soc. Hortic. Sci. 122: 841–848, 1997.Google Scholar
  12. Fernandes-Rodrigues, C.R., Nascimento Silva, E., Ferreira-Silva, S.L. et al.: High K+ supply avoids Na+ toxicity and improves photosynthesis by allowing favorable K+:Na+ ratios through the inhibition of Na+ uptake and transport to the shoots of Jatrophacurcas plants. — J. Plant Nutr. Soil Sci. 176: 157–164, 2013.CrossRefGoogle Scholar
  13. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  14. Gericke, S., Kurmies, B: [Colorimetric phosphoric aciddetermination with ammonuim-vanadate-molybdate for their use in plant analysis.]. — Zeitschr. Pflanz. Dung. Bod. 59: 235–247, 1952. [In German]Google Scholar
  15. Greenway, H., Munns, R.: Mechanisms of salt-tolerance in nonhalophytes. — Annu. Rev. Plant Phys. 31: 149–190, 1980.CrossRefGoogle Scholar
  16. Hamilton, E.W., Heckathorn, S.A.: Mitochondrial adaptations to NaCl. Complex I is protected by antioxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. — Plant Physiol. 126: 1266–1274, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Harbinson, J., Genty, B., Baker, N.R.: Relationship between the quantum efficiencies of photosystems I and II in pea leaves. — Plant Physiol. 90: 1029–1034, 1989.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hellmann, H., Funck, D., Rentsch, D., Frommer, W.B.: Hypersensitivity of an arabidopsis sugar signaling mutant toward exogenous proline application. — Plant Physiol. 122: 357–367, 2000.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Heuer, B.: Influence of exogenous application of proline and glycinebetaine on growth of salt-stressed tomato plants. — Plant Sci. 165: 693–699, 2003.CrossRefGoogle Scholar
  20. Holmstrom, K.O., Somersalo, S., Mandal, A. et al.: Improved tolerance to salinity and low temperature in transgenic tobacco producing glycinebetaine. — J. Exp. Bot. 51: 177–185, 2000.CrossRefPubMedGoogle Scholar
  21. Jain, M., Mathur, G., Koul, S., Sarin, N.B.: Ameliorative effects of proline on salt stress- induced lipid peroxidation in cell lines of groundnut (Arachis hypogea L). — Plant Cell Rep. 20: 463–468, 2001.CrossRefGoogle Scholar
  22. Kahlaoui, B., Hachicha, M., Rejeb, R. et al.: Effect of saline water on tomato under subsurface drip irrigation: nutritional and foliar aspects. — J. Soil Sci. Plant Nut. 11: 69–86, 2011a.CrossRefGoogle Scholar
  23. Kahlaoui, B., Hachicha, M., Rejeb, S. et al.: Effect of saline water on tomato under subsurface drip irrigation: yield and fruit quality. — Aust. J. Basic Applied Sci. 5: 517–529, 2011b.Google Scholar
  24. Kahlaoui, B., Hachicha, M., Rejeb, S., Rejeb, M.N.: Effect of drip irrigation and subsurface drip irrigation on tomato crop. — In: Ashraf, M., Öztürk, M., Ahmad, M.S.A., Aksoy, A. (ed.): Crop Production for Agricultural Improvement. Pp. 705–720. Springer, Dordrecht, New York 2012.CrossRefGoogle Scholar
  25. Kahlaoui, B., Hachicha, M., Teixeira, J. et al.: Response of two tomato cultivars to field-applied proline and salt stress. — J. Stress Phys. Bioch. 9: 257–265, 2013.Google Scholar
  26. Khadri, M., Tejera, N.A., Lluch, C.: Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. — Environ. Exp. Bot. 60: 211–218, 2007.CrossRefGoogle Scholar
  27. Kingsbury, R.W., Epstein, E.: Selection for salt resistant spring wheat. — Crop Sci. 24: 310–315, 1984.CrossRefGoogle Scholar
  28. Kocheva, K., Lambrev, P., Georgiev, G., Goltsev, V., Karabaliev, M.: Evaluation of chlorophyll fluorescence and membrane injury in the leaves of barley cultivars under osmotic stress. — Bioelectrochemistry 63: 121–124, 2004.CrossRefPubMedGoogle Scholar
  29. Kumar, S.G., Reddy, A.M., Sudhakar, C.: NaCl effects on proline metabolism in two high yielding genotypes of mulberry (Morus alba L.) with contrasting salt tolerance. — Plant Sci. 165: 1245–1251, 2003.CrossRefGoogle Scholar
  30. Lin, C.C., Hsu, Y.T., Kao, C.H.: The effect of NaCl on proline accumulation in rice leaves. — Plant Growth Regul. 36: 275–285, 2002.CrossRefGoogle Scholar
  31. Lone, M.I., Kueh, J.S.H., Wyn Jones, R.G.W., Bright, S.W.J.: Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos. — J. Exp. Bot. 38: 479–490, 1987.CrossRefGoogle Scholar
  32. Loukehaich, R., Elyachioui, M., Belhabib, N., Douira, A.: Identifying multiple physiological responses associated with salinity-tolerance for evaluating three tomato cultivars selected from Moroccan territory. — J. Anim. Plant Sci. 10: 1219–1231, 2011.Google Scholar
  33. Lutts, S., Majerus, V., Kinet, J.M.: NaCl effects on proline metabolism in rice (Oryza sativa L.) seedlings. — Physiol. Plantarum 105: 450–458, 1999.CrossRefGoogle Scholar
  34. Ma, Q.Q., Wang, W., Li, Y.H. et al.: Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliarapplied glycinebetaine. — J. Plant Physiol. 163: 165–175, 2006.CrossRefPubMedGoogle Scholar
  35. Mansour, M.M.F.: Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress. — Plant Physiol. Bioch. 36: 767–772, 1998.CrossRefGoogle Scholar
  36. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 50: 659–668, 2000.CrossRefGoogle Scholar
  37. Müller, P., Li, X.P., Niyogi, K.K.: Nonphotochemical quenching. A response to excess light energy. — Plant Physiol. 125: 1558–1566, 2001.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nakayama, H., Horie, T., Yonamine, I. et al.: Improving salt tolerance in plant cells. — Plant Biotechnol. 22: 477–487, 2005.CrossRefGoogle Scholar
  39. Nounjan, N., Nghia, P.T., Theerakulpisut, P.: Exogenous proline and trehalose promote recovery of rice seedlings from saltstress and differentially modulate antioxidant enzymes and expression of related genes. — J. Plant Physiol. 169: 596–604, 2012.CrossRefPubMedGoogle Scholar
  40. Petrusa, L.M., Winicov, I.: Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl. — Plant Physiol. Bioch. 35: 303–310, 1997.Google Scholar
  41. Poustini, K., Siosemardeh, A., Ranjbar, M.:Proline accumulation as a response to salt stress in wheat (Triticum aestivum L.) cultivars differing in salt tolerance. — Genet. Resour. Crop Ev. 54: 925–934, 2004.CrossRefGoogle Scholar
  42. Prasad, K.V.S.K., Saradhi, P.P.: Enhanced tolerance to photoinhibition in transgenic plants through targeting of glycinebetaine biosynthesis into the chloroplasts. — Plant Sci. 166: 1197–1212, 2004.CrossRefGoogle Scholar
  43. Rajasekaran, L.R., Kriedemann, P.E., Aspinall, D., Paleg, L.G.: Physiological significance of proline and glycinebetaine: maintaining photosynthesis during NaCl stress in wheat. — Photosynthetica 34: 357–366, 1997.CrossRefGoogle Scholar
  44. Ranjbarfordoei, A., Samson, R., Van Damme P.: Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller) D. Webb] in response to salinity stress induced by NaCl. — Photosynthetica 44: 513–522, 2006.CrossRefGoogle Scholar
  45. Roy, D., Basu, N., Bhunia, A., Banerjee, S.K.: Counteraction of exogenous l-proline with NaCl in saltsensitive cultivar of rice. — Biol. Plantarum 35: 69–72, 1993.CrossRefGoogle Scholar
  46. Sivakumar, P., Sharmila, P., Saradhi, P.P.: Proline suppresses rubisco activity in higher plants. — Biochem. Biophys. Res. Co. 252: 428–432, 1998.CrossRefGoogle Scholar
  47. Theerakulpisut, P., Bunnag, S., Kong-Ngern, K.: Genetic diversity, salinity tolerance and physiological responses to NaCl of six rice (Oryza sativa L.) cultivars. — Asian J. Plant Sci. 4: 562–573, 2005.CrossRefGoogle Scholar
  48. Tiwari, B.S., Bose, A., Ghosh, B.: Photosynthesis in rice under a salt stress. — Photosynthetica 34: 303–306, 1997.CrossRefGoogle Scholar
  49. Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., Thomas, G.: Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) differential response in salt-tolerant and — sensitive varieties. — Plant Sci. 165: 1411–1418, 2003.CrossRefGoogle Scholar
  50. Wani, A.S., Irfan, M., Hayat, S., Ahmad, A.: Response of two mustard (Brassica juncea L.) cultivars differing in photosynthetic capacity subjected to proline. — Protoplasma 249: 75–87, 2011.Google Scholar
  51. Yancey, P.H.: Compatible and counteracting solutes. In: Strange, K. (ed.): Cellular and Molecular Physiology of Cell Volume Regulation. Pp. 81–109. CRC Press, Boca Raton 1994.Google Scholar
  52. Zhu, B.C, Su, J., Chan, M.C. et al.: Overexpression of a D1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. — Plant Sci. 139: 41–48, 1998.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  • B. Kahlaoui
    • 1
  • M. Hachicha
    • 1
  • S. Rejeb
    • 1
  • M. N. Rejeb
    • 1
  • B. Hanchi
    • 2
  • E. Misle
    • 3
  1. 1.National Research Institute of Rural EngeneeringWaters and Forestry (INRGREF)ArianaTunisia
  2. 2.Faculty of Sciences, TunisUniversity CampusTunisTunisia
  3. 3.Faculty of Agricultural Sciences and ForestryUniversidad Católica del MauleCasillaCuricó, Chile

Personalised recommendations