, Volume 52, Issue 3, pp 404–412 | Cite as

Water stress and abscisic acid treatments induce the CAM pathway in the epiphytic fern Vittaria lineata (L.) Smith

  • B. D. Minardi
  • A. P. L. Voytena
  • M. Santos
  • Á. M. Randi
Original Papers


Among various epiphytic ferns found in the Brazilian Atlantic Forest, we studied Vittaria lineata (L.) Smith (Polypodiopsida, Pteridaceae). Anatomical characterization of the leaf was carried out by light microscopy, fluorescence microscopy, and scanning electron microscopy. V. lineata possesses succulent leaves with two longitudinal furrows on the abaxial surface. We observed abundant stomata inside the furrows, glandular trichomes, paraphises, and sporangia. We examined malate concentrations in leaves, relative water content (RWC), photosynthetic pigments, and chlorophyll (Chl) a fluorescence in control, water-deficient, and abscisic acid (ABA)-treated plants. Plants subjected to drought stress (DS) and treated by exogenous ABA showed significant increase in the malate concentration, demonstrating nocturnal acidification. These findings suggest that V. lineata could change its mode of carbon fixation from C3 to the CAM pathway in response to drought. No significant changes in RWC were observed among treatments. Moreover, although plants subjected to stress treatments showed a significant decline in the contents of Chl a and b, the concentrations of carotenoids were stable. Photosynthetic parameters obtained from rapid light curves showed a significant decrease after DS and ABA treatments.

Additional key words

chlorophyll fluorescence malate morphoanatomy photosynthetic pathway pigments 



scaling constant for the height of the light curve


abscisic acid


actinic light




dry mass


drought stress


electron transport rate


maximum electron transport rate


fresh mass


minimum fluorescence


maximum fluorescence


variable fluorescence


minimum fluorescence of a light-adapted leaf


fluorescence yield of a light-adapted leaf


fluorescence microscopy


maximum photochemical efficiency of PSII




optimal irradiance for the saturation of photosynthesis


scaling constant for the x-axis of the light curve


light microscopy


oxaloacetic acid


pulse-amplitude modulation




polyethylene glycol


phosphoenolpyruvate carboxylase


rapid light curve


relative water content


scanning electron microscopy


saturating light pulses


turgid mass


actual photochemical efficiency of PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashraf, M.Y., Azmi, A.R., Khan, A.H., Ala, S.A.: Effect of water stress on total phenols, peroxidase activity and chlorophyll content in wheat (Triticum aestivum L.). — Acta Physiol. Plant. 16: 185–191, 1994.Google Scholar
  2. Barrs, H.D., Weatherley, P.E.: A re-examination of the relative turgidity technique for estimating water deficits in leaves. — Aust. J. Biol. Sci. 15: 413–428, 1962.Google Scholar
  3. Bennet, B.C.: Patchiness, diversity and abundance relationships of vascular epiphytes. — Selbyana 9: 70–75, 1986.Google Scholar
  4. Benzing, D.H.: The vegetative basis of vascular epiphytism. — Selbyana 9: 23–43, 1986.Google Scholar
  5. Benzing, D.H.: Vascular Epiphytes. Pp. 376. Cambridge Univ. Press, Cambridge 1990.CrossRefGoogle Scholar
  6. Bjorkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77-K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.CrossRefPubMedGoogle Scholar
  7. Bukatsch, F.: [Observations of double staining Astra bluesafranin.] — Mikrokosmos 61: 255, 1972. [In German]Google Scholar
  8. Brodribb, T.J., McAdam, S.A.M.: Passive origins of stomata control in vascular plants. — Science 331: 582–585, 2011.CrossRefPubMedGoogle Scholar
  9. Carter, J.P., Martin, C.E.: The occurrence of Crassulacean acid metabolism among epiphytes in a high-rainfall region of Costa Rica. — Selbyana 15: 104–106, 1994.Google Scholar
  10. Chu, C., Dai, Z.Y., Ku, M. S. B., Edwards, G. E.: Induction of Crassulacean acid metabolism in the facultative halophyte Mesembryanthemum crystallinum by abscisic acid. — Plant. Physiol. 93: 1253–1260, 1990.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Costa, A. F.: [Pharmacognosy. Vol. 2.] Pp. 755. Fundação Calouste Gulbenkian, Lisboa 1982. [In Portuguese]Google Scholar
  12. Constable, J. V. H., Grace, J. B., Longstreth, D. J.: High carbon dioxide concentrations in aerenchyma of Typha latifolia. — Am. J. Bot. 79: 415–418. 1992.CrossRefGoogle Scholar
  13. Cushman, J. C., Borland, A. M.: Induction of Crassulacean acid metabolism by water limitation. — Plant Cell Environ. 25: 295–310, 2002.CrossRefPubMedGoogle Scholar
  14. Drew, M. C., He, C.J., Morgan, P. W.: Programmed cell death and aerenchyma formation in roots. — Trends Plant Sci. 5: 123–127, 2000.CrossRefPubMedGoogle Scholar
  15. Freschi, L., Rodrigues, M. A., Tiné, M. A. S., Mercier, H.: Correlation between citric acid and nitrate metabolisms during CAM cycle in the atmospheric bromeliad Tillandsia pohliana. — J. Plant Physiol. 167: 1577–1583, 2010.CrossRefPubMedGoogle Scholar
  16. Genty, B., Briantais, J. M., Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta. 900: 87–92, 1989.CrossRefGoogle Scholar
  17. Gerlach, D.: [Botanical Microtechnology: An Introduction.] Pp. 311. Georg Thieme Verlag, Stuttgart 1984. [In German]Google Scholar
  18. Gloag, R. S., Ritchie, R. J., Chen, M. et al.: Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the chlorophyll d-containing oxyphotobacterium Acaryochloris marina. — Biochim. Biophys. Acta 1767: 127–135, 2007.CrossRefPubMedGoogle Scholar
  19. Griffiths, H., Ong, B. L., Avadhani, P. N., Goh, C. J.: Recycling of respiratory CO2 during Crassulacean acid metabolism: alleviation of photoinhibition in Pyrrosia piloselloides. — Planta 179: 115–122, 1989.CrossRefPubMedGoogle Scholar
  20. Hew, C. S., Wong, Y. S., Photosynthesis and respiration of ferns in relation to their habitat. — Am. Fern J. 64: 40–48, 1974.CrossRefGoogle Scholar
  21. Hietz, P., Briones, O.: Correlation between water relations and within-canopy distribution of epiphytic ferns in a Mexican cloud forest. — Oecologia 114: 305–316, 1998.CrossRefGoogle Scholar
  22. Hoagland, D. R., Arnon D.I.: The water culture method for growing plants without soil. — Calif. Exp. Stn. Circ. 347: 1–39, 1938.Google Scholar
  23. Horton, R. F.: Stomatal opening: the role of abscisic acid. — Can. J. Bot. 49: 583–585, 1971.CrossRefGoogle Scholar
  24. Jaing, Y., Yang, W. Y., Jiang, X., Qiaoyon, C.: Active oxygen demand and effect on chlorophyll degradation in rice seedling under osmotic stress. — Acta Bot. Sin. 36: 289–295, 1994.Google Scholar
  25. Jensen, W. A.: Botanical Histochemistry: Principles and Practice. Pp. 408. W. H. Freeman & Co, San Francisco 1962.Google Scholar
  26. Johansen, D. A.: Plant Microtechnique. Pp. 523. McGraw Hill Book, New York 1940.Google Scholar
  27. Kraus, J.E, Arduin, M.: [Basic Manual of Methods in Plant Morphology.] Pp. 198. Editora Universidade Rural. Seropédica, 1997. [In Portuguese]Google Scholar
  28. Kluge, M., Avadhani, P. N., Goh, C. J.: Gas exchange and water relations in epiphytic tropical ferns. — In: Lüttge U. (ed.): Vascular Plants as Epiphytes. Ecological Studies 76. Pp. 87–109. Spriger-Verlag, Berlin 1989.CrossRefGoogle Scholar
  29. Kress, W. J.: A symposium: the biology of tropical epiphytes. — Selbyana 9: 1–22, 1986.Google Scholar
  30. Lichtenthaler, H. K.: Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. — Method. Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  31. Lüttge, U.: The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. — New Phytol. 125: 59–71, 1993.CrossRefGoogle Scholar
  32. Madison, M.: Vascular epiphytes: their systematic occurrence and salient features. — Selbyana 2: 1–13, 1977.Google Scholar
  33. Martin, S. L., Davis, R., Protti, P. et al.: The occurrence of crassulacean acid metabolism in epiphytic ferns, with an emphasis on the Vittariaceae. — Int. J. Plant Sci. 166: 623–630, 2005.CrossRefGoogle Scholar
  34. Maxwell, K., Johnson, G. N.: Chlorophyll fluorescence: A practical guide. — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  35. McAdam, S. A. M., Brodribb, T. J.: Stomatal innovation and the rise of seed plants. — Ecol. Lett. 15: 1–8, 2012.CrossRefPubMedGoogle Scholar
  36. Möllering, H.: L(-) malate. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 39–47, Vol 7. VHC Verlagsgesellschaft, Weinheim 1985.Google Scholar
  37. Neales, T. F, Hew, C. S.: Two types of carbon fixation in tropical orchids. — Planta 23: 303–306, 1975.CrossRefGoogle Scholar
  38. Nieder, J. Prosperí, J., Michaloud, G.: Epiphytes and their contribution to canopy diversity. — Plant Ecol. 153: 51–63, 2001.CrossRefGoogle Scholar
  39. Nimmo, H. G.: The regulation of phosphoenolpyruvate carboxylase in CAM plants. — Trends Plant Sci. 5: 75–80, 2000.CrossRefPubMedGoogle Scholar
  40. N’soukpoé-Kossi, C.N., Ivanov, A.G., Veeranjaneyulu, K., Leblanc, R. M. Protective action of abscisic acid against the inhibition of photosynthesis of barley leaves by bisulphite. — Photosynthetica 36: 51–60, 1999.CrossRefGoogle Scholar
  41. O’Brien, T. P., Feder, N., McCully, M.: Polychromatic staining of plant cell walls by toluidine blue. — Protoplasma 59: 368–373, 1965.CrossRefGoogle Scholar
  42. Pedersen, O., Sand-Jensen, K.: Adaptations of submerged Lobelia dortmanna to aerial life form: morphology, carbon sources, and oxygen dynamics. — Oikos 65: 89–96, 1992.CrossRefGoogle Scholar
  43. Peltzer, D., Dreyer, E., Polle, A.: Differential temperature dependencies of antioxidative enzymes in two contrasting species: Fagus sylvatica and Coleus blumei. — Plant Physiol. Bioch. 40: 141–150, 2002.CrossRefGoogle Scholar
  44. Pinhero, R. G., Rao, M. V., Paliyath, G. et al.: Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. — Plant Physiol. 114: 695–704, 1997.PubMedCentralPubMedGoogle Scholar
  45. Prado, J.: [Reviews and monographs as a basis for analysis of diversity, as we know about our flora.] — In: Jardim, M. A. G., Bastos, M. N. C., Santos, J. U. M. (ed.): [Challenges of Brazilian Botany in the new Millennium: Inventory, Systematic and Conservation of the Plant Diversity.] Pp. 78–79. MPEG/UFRA/EMBRAPA, Belém 2003. [In Portuguese]Google Scholar
  46. Pryer, K. M., Schuettpelz, E., Wolf, P. G. et al.: Phylogeny and evolution of ferns (Monilophytes) with a focus on the early leptosporangiate divergences. — Am. J. Bot. 91: 1582–1598, 2004.CrossRefPubMedGoogle Scholar
  47. Ralph, P. J., Gademann, R.: Rapid light curves: a powerful tool to assess photosynthetic activity. — Aquat. Bot. 82: 222–237, 2005.CrossRefGoogle Scholar
  48. Rathinasabapathi, B.: Ferns represent untapped biodiversity for improving crops for enviromental stress tolerance. — New Phytol. 172: 385–390, 2006.CrossRefPubMedGoogle Scholar
  49. Ravensberg, W. J., Hennipman, E.: The Pyrrosia species formerly referred to as Drymoglossum and Saxiglossum. — Leiden Bot. Ser. 9: 281–310, 1986.Google Scholar
  50. Reddy, A. R., Chaitanya, K. V., Vivekanandan, M.: Droughtinduced responses of photosynthesis and antioxidant metabolism in higher plants. — J. Plant Physiol. 161: 1189–1202, 2004.CrossRefGoogle Scholar
  51. Ritchie, R. J.: Fitting light saturation curves measured using modulated fluorometry. — Photosynth. Res. 96: 201–215, 2008.CrossRefPubMedGoogle Scholar
  52. Runcie, J. W., Durako, M. J.: Among-shoot variability and leafspecific absorptance characteristics affect diel estimates of in situ electron transport of Posidonia australis. — Aquat. Bot. 80: 209–220, 2004.CrossRefGoogle Scholar
  53. Rut, G., Krupa, J., Miszalski, Z. et al.: Crassulacean acid metabolism in the epiphytic fern Platycerium bifurcatum. — Photosynthetica 46: 156–160, 2008.CrossRefGoogle Scholar
  54. Ruzin, S. E.: Plant Microtechnique and Microscopy. Pp. 322–322. Oxford University Press, New York 1999.Google Scholar
  55. Schreiber, U.: Pulse-amplitude (PAM) fluorometry and saturation pulse method. — In: Papageorgiou, G. and Govindjee (ed.): Chlorophyll a Fluorescence: a Signature of Photosynthesis. Advances in Photosynthesis and Respiration Series. Pp. 279–319. Kluwer Academic Publishers, Dordrecht 1994.Google Scholar
  56. Smith, A. R., Pryer, K. M., Schuettpelz, E., Korall, P., Schneider, H., Wolf, P. G. A classification for extant ferns. — Taxon 55: 705–731, 2006.CrossRefGoogle Scholar
  57. Sinclair, R.: Water relations of tropical epiphytes. III. Evidence for crassulacean acid metabolism. — J. Exp. Bot. 35: 1–7, 1984.CrossRefGoogle Scholar
  58. Tausz, M., Hietz, P., Briones, O.: The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species of a Mexican cloud forest. — Aust. J. Plant Physiol. 28: 775–783, 2001.Google Scholar
  59. Tryon, R. M., Tryon, A.F.: Ferns and Allied Plants with Special Reference to Tropical America. Pp. 857. Springer-Verlag, New York 1982.CrossRefGoogle Scholar
  60. Uphof, J. C. T.: Physiological anatomy of xerophytic Selaginellas. — New Phytol. 19: 101–131, 1920.CrossRefGoogle Scholar
  61. White, A. J., Critchley, C.: Rapid light curves: a new fluorescence method to assess the state of the photosynthetic apparatus. — Photosynth. Res. 59: 63–72, 1999.CrossRefGoogle Scholar
  62. Winter, K., Wallace, B. J., Stocker, G. C., Roksandic, Z.: Crassulacean acid metabolism in Australian vascular epiphytes and some related species. — Oecologia 57: 129–141, 1983.CrossRefGoogle Scholar
  63. Wong, S. C., Hew, C. S.: Diffusive resistance, titratable acidity, and CO2 fixation in two tropical epiphytic ferns. — Am. Fern J. 66: 121–124, 1976.CrossRefGoogle Scholar
  64. Zar, J. H. Biostatistical Analysis. Pp. 718. Prentice Hall, New Jersey 1996.Google Scholar
  65. Zotz, G. How prevalent is crassulacean acid metabolism among vascular epiphytes? — Oecologia 138: 184–192, 2004.CrossRefPubMedGoogle Scholar
  66. Zotz, G., Ziegler, H. The occurrence of crassulacean acid metabolism among vascular epiphytes from Central Panama. — New Phytol. 137: 223–229, 1997.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  • B. D. Minardi
    • 1
  • A. P. L. Voytena
    • 1
  • M. Santos
    • 1
  • Á. M. Randi
    • 1
  1. 1.Plant Physiology Laboratory, Department of BotanyFederal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations