Advertisement

Photosynthetica

, Volume 52, Issue 3, pp 386–396 | Cite as

Leaf traits variation in Sesleria nitida growing at different altitudes in the Central Apennines

  • L. Gratani
  • M. F. Crescente
  • V. D’Amato
  • C. Ricotta
  • A. R. Frattaroli
  • G. Puglielli
Original Papers

Abstract

Global climate change may act as a potent agent of natural selection within species with Mediterranean mountain ecosystems being particularly vulnerable. The aim of this research was to analyze whether the phenotypic plasticity of Sesleria nitida Ten. could be indicative of its future adaptive capability to global warming. Morphological, anatomical, and physiological leaf traits of two populations of S. nitida growing at different altitudes on Mount Terminillo (Italy) were analyzed. The results showed that leaf mass per unit leaf area, leaf tissue density, and total leaf thickness were 19, 3, and 31% higher in leaves from the population growing at 1,895 m a.s.l. (B site) than in leaves from the population growing at 1,100 m a.s.l. (A site), respectively. Net photosynthetic rate (P N) and respiration rate (R D) peaked in June in both A and B leaves [9.4 ± 1.3 μmol(CO2) m−2 s−1 and 2.9 ± 0.9 μmol(CO2) m−2 s−1, respectively] when mean air temperature was 16 ± 2°C. R D/P N was higher in B than in A leaves (0.35 ± 0.07 and 0.21 ± 0.03, respectively, mean of the study period). The mean plasticity index (PI = 0.24, mean of morphological, anatomical, and physiological leaf traits) reflected S. nitida adaptability to the environmental stress conditions at different altitudes on Mount Terminillo. Moreover, the leaf key traits of the two populations can be used to monitor wild populations over a long term in response to global change.

Additional key words

adaptation leaf anatomy photosynthesis respiration 

Abbreviations

A site

1,100 m a.s.l.

B site

1,895 m a.s.l.

C

soil organic carbon content

CD

mesophyll cell density

DM

dry mass

DXV

diameter of the xylematic vessels

E

transpiration rate

ETab

abaxial epidermis thickness

ETad

adaxial epidermis thickness

gs

stomatal conductance

HCB

height of the central vascular bundle

HLB

height of the major lateral vascular bundle

LA

leaf area

LMA

leaf mass per unit leaf area

LT

total leaf thickness

LTD

leaf tissue density

LW

leaf width

N

total soil nitrogen content

PI

mean plasticity index

PIa

anatomical plasticity index

PIm

morphological plasticity index

PIp

physiological plasticity index

PN

net photosynthetic rate

RD

respiration rate

RH

relative air humidity

SAIab

abaxial stomatal area index

SAIad

adaxial stomatal area index

SBC

total surface area of bulliform cells

SDab

abaxial stomatal cell density

SDad

adaxial stomatal cell density

SLab

abaxial stomatal length

SLab

adaxial stomatal length

SOM

soil organic matter content

SWC

soil water content

T

air temperature

Tl

leaf temperature

Tm

mean air temperature

Tmax

mean maximum air temperature

Tmin

mean minimum air temperature

UST

thickness of the upper sclerenchyma layers

WCB

width of central vascular bundle

WLB

width of the major lateral vascular bundle

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken, S.N., Yeaman, S., Holliday, J.A. et al.: Adaptation, migration or extirpation: climate change outcomes for tree populations. — Evol. Appl. 1: 95–111, 2008.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Allard, G., Nelson, C.J., Pallardy, S.G.: Shade effects on growth of tall fescue: I. Leaf anatomy and dry matter partitioning. — Crop Sci. 31: 163–167, 1991.CrossRefGoogle Scholar
  3. Aryal, B., Neuner, G.: Leaf wettability decreases along an extreme altitudinal gradient. — Oecologia 162: 1–9, 2010.CrossRefPubMedGoogle Scholar
  4. Ashton, P.M.S., Berlyn, G.P.: A comparison of leaf physiology and anatomy of Quercus (Section Erythrobalanus-Fagaceae) species in different light environments. — Am. J. Bot. 81: 589–597, 1994.CrossRefGoogle Scholar
  5. Atkin, O.K., Edwards, E.J., Loveys, B.R.: Response of root respiration to changes in temperature and its relevance to global warming. — New Phytol. 147: 141–154, 2000.CrossRefGoogle Scholar
  6. Atkin, O.K., Evans, J.R., Siebke, K.: Relationship between the inhibition of leaf respiration by light and enhancement of leaf dark respiration following light treatment. — Aust. J. Plant Physiol. 25: 437–443, 1998.CrossRefGoogle Scholar
  7. Bazzaz, F.A.: Plants in Changing Environments: Linking Physiological, Population, and Community Ecology. Pp. 320. Cambridge University Press, Cambridge 1996.Google Scholar
  8. Benito, B., Lorite, J., Peñas, J.: Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-alpine ecosystems. — Climatic Change 108: 471–483, 2011.CrossRefGoogle Scholar
  9. Breshears, D.D., Myers, O.B., Meyer, C.W. et al.: Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. — Front. Ecol. Environ. 7: 185–189, 2009.CrossRefGoogle Scholar
  10. Burnham, K.P., Anderson, D.R.: Model Selection and Multimodel Inference: a Practical Information — Theoretic Approach. 2nd Ed. Pp. 488. Springer, New York 2002.Google Scholar
  11. Byars, S.G., Papst, W., Hoffmann, A.A.: Local adaptation and cogradient selection in the alpine plant, Poa hiemata, along a narrow altitudinal gradient. — Evolution 61: 2925–2941, 2007.CrossRefPubMedGoogle Scholar
  12. Calcagno, V., de Mazancourt, C.: glmulti: an R package for easy automated model selection with (generalized) linear models. — J. Stat. Softw. 34: 1–29, 2010.CrossRefGoogle Scholar
  13. Cavaleri, M.A., Oberbauer, S.F., Ryan, M.G.: Foliar and ecosystem respiration in an old-growth tropical rain forest. — Plant Cell Environ. 31: 473–483, 2008.CrossRefPubMedGoogle Scholar
  14. Cavieres, L.A., Badano, E.I., Sierra-Almeida, A. et al.: Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. — New Phytol. 169: 59–69, 2006.CrossRefPubMedGoogle Scholar
  15. Chapin, F.S., Autumn, K., Pugnaire, F.: Evolution of suites of traits in response to environmental stress. — Am. Nat. 142: S78–S92, 1993.CrossRefGoogle Scholar
  16. Deyl, M.: Study of the Genus Sesleria. Pp. 256. Československá botanická společnost, Praha 1946.Google Scholar
  17. Diaz, H.F., Grosjean, M., Graumlich, L.: Climate variability and change in high elevation regions: past, present and future. — Climatic Change 59: 1–4, 2003.CrossRefGoogle Scholar
  18. Di Pietro, R.: Taxonomic features of Sesleria calabrica (Poaceae), a neglected species from southern Italy. — Folia Geobot. 42: 289–313, 2007.CrossRefGoogle Scholar
  19. Dixon, J.M.: Drought resistance in Sesleria albicans Kit. ex Schultes, compared with Agrostis capillaris L. and Cynosurus cristatus L. — New Phytol. 103: 559–572, 1986.CrossRefGoogle Scholar
  20. Doyle, J.J., Flagel, L.E., Paterson, A.H. et al.: Evolutionary genetics of genome merger and doubling in plants. — Annu. Rev. Genet. 42: 443–461, 2008.CrossRefPubMedGoogle Scholar
  21. Engler, R., Randin, C.F., Thuiller, W. et al.: 21st century climate change threatens mountain flora unequally across Europe. — Glob. Change Biol. 17: 2330–2341, 2011.CrossRefGoogle Scholar
  22. Franks, S.J., Sim, S., Weis, A.E.: Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. — P. Natl. Acad Sci. USA 104: 1278–1282, 2007.CrossRefGoogle Scholar
  23. Frei, E., Bodin, J., Walther, G.: Plant species’ range shifts in mountainous areas — all uphill from here? — Bot. Helv. 120: 117–128, 2010.CrossRefGoogle Scholar
  24. Galmés, J., Ribas-Carbó, M., Medrano, H., Flexas, J.: Response of leaf respiration to water stress in Mediterranean species with different growth forms. — J. Arid Environ. 68: 206–222, 2007.CrossRefGoogle Scholar
  25. González, A.V., Gianoli, E.: Morphological plasticity in response to shading in three Convolvulus species of different ecological breadth. — Acta Oecol. 26: 185–190, 2004.CrossRefGoogle Scholar
  26. Gratani, L., Catoni, R., Pirone, G. et al.: Physiological and morphological leaf trait variations in two Apennine plant species in response to different altitudes. — Photosynthetica 50: 15–23, 2012.CrossRefGoogle Scholar
  27. Gratani, L., Meneghini, M., Pesoli, P., Crescente, M.F.: Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy. — Trees-Struct. Funct. 17: 515–521, 2003.CrossRefGoogle Scholar
  28. Gratani, L., Varone, L.: Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. — Photosynthetica 42: 551–558, 2004.CrossRefGoogle Scholar
  29. Gremer, J.R., Kimball, S., Angert, A.L., Venable, D.L., Huxman, T.E.: Variation in photosynthetic response to temperature in a guild of winter annual plants. — Ecology 93: 2693–2704, 2012.CrossRefPubMedGoogle Scholar
  30. Hovenden, M.J., Vander Schoor, J.K.: Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cunninghamii (Nothofagaceae). — New Phytol. 161: 585–594, 2004.CrossRefGoogle Scholar
  31. Jump, A.S., Peñuelas, J.: Running to stand still: adaptation and the response of plants to rapid climate change. — Ecol. Lett. 8: 1010–1020, 2005.CrossRefGoogle Scholar
  32. Kahmen, S., Poschlod, P.: Effects of grassland management on plant functional trait composition. — Agr. Ecosyst. Environ. 128: 137–145, 2008.CrossRefGoogle Scholar
  33. Körner, C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Pp. 339. Springer, Berlin 1999.CrossRefGoogle Scholar
  34. Kuzmanović, N., Šinžar-Sekulić, J., Lakušic, D.: Leaf anatomy of the Sesleria rigida Heuffel ex Reichenb. (Poaceae) in Serbia. — Bot. Serbica 33: 51–67, 2009.Google Scholar
  35. Lenoir, J., Gégout, J.C., Marquet, P.A. et al.: A significant upward shift in plant species optimum elevation during the 20th century. — Science 320: 1768–1771, 2008.CrossRefPubMedGoogle Scholar
  36. Liang, J.Y., Xia, J.Y., Liu, L.L., Wan, S.Q.: Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. — J. Plant Ecol. 6: 437–447, 2013.CrossRefGoogle Scholar
  37. Lionello, P., Malanotte-Rizzoli, P., Boscolo, R. et al.: The Mediterranean climate: an overview of the main characteristics and issues. — In: Lionello, P., Malanotte-Rizzoli, P., Boscolo, R. (ed.): Mediterranean Climate Variability. Pp. 1–26. Elsevier, Amsterdam 2006.Google Scholar
  38. Lloyd, N.D.H., Woolhouse, H.W.: Leaf resistances in different populations of Sesleria caerulea (L.) Ard. — New Phytol. 80: 79–85, 1978.CrossRefGoogle Scholar
  39. Loveys, B.R., Scheurwater, I., Pons, T.L., Fitter, A.H., Atkin, O.K.: Growth temperature influences the underlying components of relative growth rate: an investigation using inherently fast-and slow-growing plant species. — Plant Cell Environ. 25: 975–987, 2002.CrossRefGoogle Scholar
  40. Matesanz, S., Gianoli, E., Valladares, F.: Global change and the evolution of phenotypic plasticity in plants. — Ann. NY. Acad. Sci. 1206: 35–55, 2010.CrossRefPubMedGoogle Scholar
  41. Morecroft, M.D., Marrs, R.H., Woodward, F.I.: Altitudinal and seasonal trends in soil nitrogen mineralization rate in the Scottish Highlands. — J. Ecol. 80: 49–56, 1992.CrossRefGoogle Scholar
  42. Nardini, A., Dimasi, F., Klepsch, M., Jansen, S.: Ion-mediated enhancement of xylem hydraulic conductivity in four Acer species: relationships with ecological and anatomical features. — Tree Physiol. 32: 1434–1441, 2012.CrossRefPubMedGoogle Scholar
  43. Neuner, G., Braun, V., Buchner, O., Taschler, D.: Leaf rosette closure in the alpine rock species Saxifraga paniculata Mill.: significance for survival of drought and heat under high irradiation. — Plant Cell Environ. 22: 1539–1548, 1999.CrossRefGoogle Scholar
  44. Neuner, G., Pramsohler, M.: Freezing and high temperature thresholds of photosystem 2 compared to ice nucleation, frost and heat damage in evergreen subalpine plants. — Physiol. Plantarum 126: 196–204, 2006.CrossRefGoogle Scholar
  45. Nicotra, A.B., Atkin, O.K., Bonser, S.P. et al.: Plant phenotypic plasticity in a changing climate. — Trends Plant Sci. 15: 684–692, 2010.CrossRefPubMedGoogle Scholar
  46. Parmesan, C.: Ecological and evolutionary responses to recent climate change. — Annu. Rev. Ecol. Evol. S. 37: 637–669, 2006.CrossRefGoogle Scholar
  47. Pauli, H., Gottfried, M., Dullinger, S. et al.: Recent plant diversity changes on Europe’s mountain summits. — Science 336: 353–355, 2012.CrossRefPubMedGoogle Scholar
  48. Pauli, H., Gottfried, M., Grabherr, G.: Effect of climate change on the alpine and nival vegetation of the Alps. — J. Mt. Ecol. 7: 9–12, 2003.Google Scholar
  49. Pellissier, L., Bråthen, K.A., Pottier, J. et al.: Species distribution models reveal apparent competitive and facilitative effects of a dominant species on the distribution of tundra plants. — Ecography 33: 1004–1014, 2010.CrossRefGoogle Scholar
  50. Pelorosso, R., Della Chiesa, S., Tappeiner, U. et al.: Stability analysis for defining management strategies in abandoned mountain landscapes of the Mediterranean basin. — Landscape Urban Plan. 103: 335–346, 2011.CrossRefGoogle Scholar
  51. Peñuelas, J., Boada, M.: A global change-induced biome shift in the Montseny mountains (NE Spain). — Glob. Change Biol. 9: 131–140, 2003.CrossRefGoogle Scholar
  52. Pigliucci, M.: Phenotypic Plasticity: Beyond Nature and Nurture. Pp. 344. Johns Hopkins University Press, Baltimore 2001.Google Scholar
  53. Pignatti, S.: [Flora of Italy. Vol. 3.] Pp. 507. Edagricole, Bologna 1982. [In Italian]Google Scholar
  54. Pignatti, S.: [Bioindicator values of vascular plants of the flora of Italy.] — Braun-Blanquetia 39: 3–97, 2005. [In Italian]Google Scholar
  55. Poorter, H., Gifford, R.M., Kriedemann, P.E., Wong, S.C.: A quantitative-analysis of dark respiration and carbon content as factors in the growth-response of plants to elevated CO2. — Aust. J. Bot. 40: 501–513, 1992.CrossRefGoogle Scholar
  56. Reich, P.B., Kloeppel, B.D., Ellsworth, D.S., Walters, M.B.: Different photosynthesis-nitrogen relations in deciduos hardwood and evergreen coniferous tree species. — Oecologia 104: 24–30, 1995.CrossRefGoogle Scholar
  57. Reich, P.B., Walters, M.B., Ellsworth, D.S.: Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. — Ecol. Monogr. 62: 365–392, 1992.CrossRefGoogle Scholar
  58. Rice, K.J., Emery, N.C.: Managing microevolution: restoration in the face of global change. — Front. Ecol. Environ. 1: 469–478, 2003.CrossRefGoogle Scholar
  59. Ruiz-Labourdette, D., Schmitz, M.F., Pineda, F.D.: Changes in tree species composition in Mediterranean mountains under climate change: indicators for conservation planning. — Ecol. Indic. 24: 310–323, 2013.CrossRefGoogle Scholar
  60. Scheepens, J.F., Frei, E.S., Stöcklin, J.: Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. — Oecologia 164: 141–150, 2010.CrossRefPubMedGoogle Scholar
  61. Sims, J.R., Haby, V.A.: Simplified colorimetric determination of soil organic matter. — Soil Sci. 112: 137–141, 1971.CrossRefGoogle Scholar
  62. Solomon, S., Qin D., Manning M. et al.: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 996. Cambridge University Press, Cambridge 2007.Google Scholar
  63. Stebbins, G.L.: Taxonomy and the evolution of genera, with special reference to the family Gramineae. — Evolution 10: 235–245, 1956.CrossRefGoogle Scholar
  64. Sultan, S.E.: Phenotypic plasticity for fitness components in Polygonum species of contrasting ecological breadth. — Ecology 82: 328–343, 2001.CrossRefGoogle Scholar
  65. Suttle, K.B., Thomsen, M.A., Power, M.E.: Species interactions reverse grassland responses to changing climate. — Science 315: 640–642, 2007.CrossRefPubMedGoogle Scholar
  66. Taguchi, Y., Wada, N.: Variations of leaf traits of an alpine shrub Sieversia pentapetala along an altitudinal gradient and under a simulated environmental change. — Polar Biosci. 14: 79–87, 2001.Google Scholar
  67. Tammaro, F., Catonica, C.: New localities of Sesleria caerulea (L.) Ardoino (Poaceae) in Central Italy (Abruzzo). — Flora Mediterranea 10: 303–310, 2000.Google Scholar
  68. Theurillat, J.P., Guisan, A.: Potential impact of climate change on vegetation in the European Alps: a review. — Climatic Change 50: 77–109, 2001.CrossRefGoogle Scholar
  69. Thuiller, W., Lavorel, S., Araùjo, M.B. et al.: Climate change threats to plant diversity in Europe. — P. Natl. Acad. Sci. USA 102: 8245–8250, 2005.CrossRefGoogle Scholar
  70. Tutin, T.G., Heywood, V.H., Burges, N.A. et al.: Flora Europaea. Vol. 5. Pp. 176. Cambridge University Press, Cambridge 1980.Google Scholar
  71. Valladares, F., Gianoli, E., Gómez, J.M.: Ecological limits to plant phenotypic plasticity. — New Phytol. 176: 749–763, 2007.CrossRefPubMedGoogle Scholar
  72. Valladares, F., Wright, S.J., Lasso, E. et al.: Plastic phenotypic response to light of 16 congeneric shrubs from Panamanian rainforest. — Ecology 81: 1925–1936, 2000.CrossRefGoogle Scholar
  73. Varone, L., Gratani, L.: Physiological response of eight Mediterranean maquis species to low air temperature during winter. — Photosynthetica 45: 385–391, 2007.CrossRefGoogle Scholar
  74. Violante, P.: [Chemical Methods of Soil Analysis.] Pp. 60. Franco Angeli Editore, Milan 2000. [In Italian]Google Scholar
  75. Vitasse, Y., Bresson, C.C., Kremer, A. et al.: Quantifying phenological plasticity to temperature in two temperate tree species. — Funct. Ecol. 24: 1211–1218, 2010.CrossRefGoogle Scholar
  76. Walther, G.R.: Community and ecosystem responses to recent climate change. — Philos. T. R. Soc. B. 365: 2019–2024, 2010.CrossRefGoogle Scholar
  77. Wright, I.J., Reich, P.B., Westoby, M. et al.: The worldwide leaf economics spectrum. — Nature 428: 821–827, 2004.CrossRefPubMedGoogle Scholar
  78. Zunzunegui, M., Ain-Lhout, F., Díaz Barradas, M.C. et al.: Physiological, morphological and allocation plasticity of a semi-deciduous shrub. — Acta Oecol. 35: 370–379, 2009.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  • L. Gratani
    • 1
  • M. F. Crescente
    • 1
  • V. D’Amato
    • 1
  • C. Ricotta
    • 1
  • A. R. Frattaroli
    • 2
  • G. Puglielli
    • 1
  1. 1.Department of Environmental BiologySapienza University of RomeRomeItaly
  2. 2.Department of Life Earth and Environmental ScienceUniversity of L’AquilaL’AquilaItaly

Personalised recommendations