Advertisement

Photosynthetica

, Volume 52, Issue 3, pp 321–331 | Cite as

Seasonal and interannual variations of ecosystem photosynthetic features in an alpine dwarf shrubland on the Qinghai-Tibetan Plateau, China

  • H. Q. Li
  • F. W. Zhang
  • Y. N. LI
  • G. M. Cao
  • L. Zhao
  • X. Q. Zhao
Open Access
Original Papers

Abstract

Ecosystem photosynthetic characteristics are of utmost importance for the estimation of regional carbon budget, but such characteristics are not well understood in alpine regions. We collected CO2 flux data measured by eddy covariance technique over an alpine dwarf shrubland on the Qinghai-Tibetan Plateau during years 2003–2010; and we quantified the temporal patterns of ecosystem apparent quantum yield (a), saturated photosynthetic rate (P max), and ecosystem dark respiration (R De). Results showed that the strong seasonality of a and R De was driven mainly by air temperature (T a), whereas that of P max was much more determined by leaf area index rather than abiotic factors. Diurnal thermal fluctuation inhibited significantly the daytime photosynthetic capacity. Stepwise regression revealed that the seasonal deviations of a, P max, and R De were significantly controlled by T a. The annual a was regulated mainly by annual growing season T a, which indicated that the response of ecosystem a was instant. The annual variations of P max correlated positively with soil temperature 5 cm below ground (T s) of the annual nongrowing season and those of R De related negatively with the annual nongrowing season precipitation. We suggested that a lagged response regulated the annual P max and the annual R De. Annual deviations of a and R De were both significantly controlled by annual T s, and those of P max were marginally determined by annual PPFD. Thus, the future warming scenario, especially significant for nongrowing seasonal warming in the Qinghai-Tibetan Plateau, would favor ecosystem photosynthetic capacity in the alpine dwarf shrubland.

Additional key words

ecosystem photosynthetic parameters eddy covariance technique leaf area index phenology rectangular hyperbolic light response 

Abbreviations

a

ecosystem apparent quantum yield

ADT

amplitude of diurnal temperature

EVI

enhanced vegetation index

LAI

leaf area index

NEE

net ecosystem CO2 exchange

Pmax

saturated photosynthesis rate

Q10

the magnitude of respiration rate change for a change in temperature of 10°C

RDe

ecosystem dark respiration

SWC

volumetric water content of the soil 10 cm below ground

Ta

air temperature

Tc

shrub canopy temperature

Ts

temperature 5 cm below ground

VPD

vapour pressure deficit

References

  1. Biasi, C., Meyer, H., Rusalimova, O. et al.: Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. — Plant Soil 307: 191–205, 2008.CrossRefGoogle Scholar
  2. Cannell, M.G.R., Thornley, J.H.M.: Temperature and CO2 responses of leaf and canopy photosynthesis:a clarification using the non-rectangular hyperbola model of photosynthesis. — Ann. Bot.-London 82: 883–892, 1998.CrossRefGoogle Scholar
  3. Cannone, N., Sgorbati, S., Guglielmin, M.: Unexpected impacts of climate change on alpine vegetation. — Front. Ecol. Environ. 5: 360–364, 2007.Google Scholar
  4. Chapin, F.S., Shaver, G.R., Giblin, A.E. et al.: Responses of arctic tundra to experimental and observed changes in climate. — Ecology 76: 694–711, 1995.CrossRefGoogle Scholar
  5. Ehleringer, J., Pearcy, R.W.: Variation in quantum yield for CO2 uptake among C3 and C4 plants. — Plant Physiol. 73: 555–559, 1983.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Falge, E., Baldocchi, D., Olson, R. et al.: Gap filling strategies for defensible annual sums of net ecosystem exchange. — Agr. Forest Meteorol. 107: 43–69, 2001.CrossRefGoogle Scholar
  7. Field, C., Mooney, H.A.: Leaf age and seasonal effects on light, water, and nitrogen use efficiency in a California shrub. — Oecologia 56: 348–355, 1983.CrossRefGoogle Scholar
  8. Flanagan, L.B., Wever, L.A., Carlson, P.J.: Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. — Global Change Biol. 8: 599–615, 2002.CrossRefGoogle Scholar
  9. Fu, Y.L., Yu, G.R., Sun, X.M. et al.: Depression of net ecosystem CO2 exchange in semi-arid Leymus chinensis steppe and alpine shrub. — Agr. Forest Meteorol. 137: 234–244, 2006.CrossRefGoogle Scholar
  10. Fu, Y.L., Zheng, Z.M., Yu, G.R. et al.: Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. — Biogeosciences 6: 2879–2893, 2009.CrossRefGoogle Scholar
  11. Gilmanov, T.G., Soussana, J.E., Aires, L. et al.: Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. — Agr. Ecosyst. Environ. 121: 93–120, 2007.CrossRefGoogle Scholar
  12. Gilmanov, T.G., Verma, S.B., Sims, P.L. et al.: Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO2-flux tower measurements. — Global Biogeochem. Cy. 17: 16–40, 2003.CrossRefGoogle Scholar
  13. Gu, S., Tang, Y.H., Cui, X.Y. et al.: Energy exchange between the atmosphere and a meadow ecosystem on the Qinghai-Tibetan Plateau. — Agr. Forest Meteorol. 129: 175–185, 2005.CrossRefGoogle Scholar
  14. Gu, S., Tang, Y., Du, M. et al.: Short-term variation of CO2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan Plateau. — J. Geophys. Res.-Atmos. 108: 4670–4679, 2003.CrossRefGoogle Scholar
  15. Hobbie, S.E., Chapin, F.S.: Winter regulation of tundra litter carbon and nitrogen dynamics. — Biogeochemistry 35: 327–338, 1996.CrossRefGoogle Scholar
  16. Kato, T., Tang, Y.H., Gu, S. et al.: Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. — Agr. Forest Meteorol. 124: 121–134, 2004.Google Scholar
  17. Kato, T., Tang, Y.H., Gu, S. et al.: Temperature and biomass influences on interannual changes in CO2 exchange in an alpine meadow on the Qinghai-Tibetan Plateau. — Global Change Biol. 12: 1285–1298, 2006.CrossRefGoogle Scholar
  18. Knapp, A.K., Briggs, J.M., Collins, S.L. et al.: Shrub encroachment in North American grasslands: shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. — Global Change Biol. 14: 615–623, 2008.CrossRefGoogle Scholar
  19. Körner, C.: Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Pp. 139–145. Springer-Verlag, Berlin & Heidelberg 1999.CrossRefGoogle Scholar
  20. Li, M.C., Liu, H.Y., Yi, X.F. et al.: Characterization of photosynthetic pathway of plant species growing in the eastern Tibetan plateau using stable carbon isotope composition. — Photosynthetica 44: 102–108, 2006.CrossRefGoogle Scholar
  21. Marcolla, B., Cescatti, A., Manca, G. et al.: Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. — Agr. Forest Meteorol. 151: 1233–1243, 2011.CrossRefGoogle Scholar
  22. Matthews, H.D., Eby, M., Ewen, T. et al.: What determines the magnitude of carbon cycle-climate feedbacks? — Global Biogeochem. Cy. 21: 1–12, 2007.CrossRefGoogle Scholar
  23. McFadden, J.P., Eugster, W., Chapin, F.S.: A regional study of the controls on water vapor and CO2 exchange in arctic tundra. — Ecology 84: 2762–2776, 2003.CrossRefGoogle Scholar
  24. McGuire, A.D., Anderson, L.G., Christensen, T.R. et al.: Sensitivity of the carbon cycle in the Arctic to climate change. — Ecol. Monogr. 79: 523–555, 2009.CrossRefGoogle Scholar
  25. Niu, S.L., Li, Z.X., Xia, J.Y. et al.: Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China. — Environ. Exp. Bot. 63: 91–101, 2008.CrossRefGoogle Scholar
  26. Oechel, W.C., Hastings, S.J., Vourlitis, G. et al.: Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. — Nature 361: 520–523, 1993.CrossRefGoogle Scholar
  27. Rastetter, E.B., Aber, J.D., Peters, D.P.C. et al.: Using mechanistic models to scale ecological processes across space and time. — Bioscience 53: 68–76, 2003.CrossRefGoogle Scholar
  28. Redondo-Gómez, S., Mancilla-Leytón, J.M., Mateos-Naranjo, E. et al.: Differential photosynthetic performance of three Mediterranean shrubs under grazing by domestic goats. — Photosynthetica 48: 348–354, 2010.CrossRefGoogle Scholar
  29. Ruimy, A., Jarvis, P.G., Baldocchi, D.D. et al.: CO2 fluxes over plant canopies and solar radiation: a review. — Adv. Ecol. Res. 26: 1–68, 1995.CrossRefGoogle Scholar
  30. Saito, M., Kato, T., Tang, Y.H.: Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. — Global Change Biol. 15: 221–228, 2009.CrossRefGoogle Scholar
  31. Serrano-Ortiz, P., Kowalski, A.S., Domingo F. et al.: Variations in daytime net carbon and water exchange in a montane shrubland ecosystem in southeast Spain. — Photosynthetica 45: 30–35, 2007.CrossRefGoogle Scholar
  32. Starr, G., Oberbauer, S.F., Ahlquist, L.E.: The photosynthetic response of Alaskan tundra plants to increased season length and soil warming. — Arct. Antarct. Alp. Res. 40: 181–191, 2008.CrossRefGoogle Scholar
  33. Strack, J.E., Pielke, R.A., Liston, G.E.: Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures. — J. Geophys. Res.-Biogeo. 112: 1–12, 2007.CrossRefGoogle Scholar
  34. Sturm, M., Schimel, J., Michaelson, G. et al.: Winter biological processes could help convert arctic tundra to shrubland. — Bioscience 55: 17–26, 2005.CrossRefGoogle Scholar
  35. Vick, J.K., Young, D.R.: Corticular photosynthesis: A mechanism to enhance shrub expansion in coastal environments. — Photosynthetica 47: 26–32, 2009.CrossRefGoogle Scholar
  36. Vourlitis, G.L., Oechel, W.C.: Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. — Ecology 80: 686–701, 1999.CrossRefGoogle Scholar
  37. Wang, S.P., Duan, J.C., Xu, G.P. et al.: Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. — Ecology 93: 2365–2376, 2012.CrossRefPubMedGoogle Scholar
  38. Webb, E.K., Pearman, G.I., Leuning, R.: Correction of the flux measurements for density effects due to heat and water vapour transfer. — Q. J. Roy. Meteor. Soc. 106: 85–100, 1980.CrossRefGoogle Scholar
  39. Wohlfahrt, G., Anderson-Dunn, M., Bahn, M. et al.: Biotic, abiotic, and management controls on the net ecosystem CO2 exchange of European mountain grassland ecosystems. — Ecosystems 11: 1338–1351, 2008.CrossRefGoogle Scholar
  40. Wookey, P.A., Aerts, R., Bardgett, R.D. et al.: Ecosystem feedbacks and cascade processes: understanding their role in the responses of arctic and alpine ecosystems to environmental change. — Global Change Biol. 15: 1153–1172, 2009.CrossRefGoogle Scholar
  41. Xiong, F.S.S., Mueller, E.C., Day, T.A.: Photosynthetic and respiratory acclimation and growth response of antarctic vascular plants to contrasting temperature regimes. — Am. J. Bot. 87: 700–710, 2000.CrossRefPubMedGoogle Scholar
  42. Xu, L.L., Zhang, X.Z., Shi, P.L., Yu, G.R.: Response of canopy quantum yield of alpine meadow to temperature under low atmospheric pressure on Tibetan Plateau. — Sci. China Ser. D. 49: 219–225, 2006.Google Scholar
  43. Yashiro, Y., Shizu, Y., Hirota, M. et al.: The role of shrub (Potentilla fruticosa) on ecosystem CO2 fluxes in an alpine shrub meadow. — J. Plant Ecol. 3: 89–97, 2010.CrossRefGoogle Scholar
  44. Zhang, G., Zhang, Y., Dong, J.W., Xiao, X.M.: Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. — P. Natl Acad. Sci. USA 110: 4309–4314, 2013.CrossRefGoogle Scholar
  45. Zhang, L.M., Yu, G.R., Sun, X.M. et al.: Seasonal variations of ecosystem apparent quantum yield (a) and maximum photosynthesis rate (P max) of different forest ecosystems in China. — Agr. Forest Meteorol. 137: 176–187, 2006.CrossRefGoogle Scholar
  46. Zhao, L., Li, Y., Xu, S. et al.: Diurnal, seasonal and annual variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan plateau. — Global Change Biol. 12: 1940–1953, 2006.Google Scholar
  47. Zheng, D., Zhang, Q.S., Wu, S.H.: Mountain Geoecology and Sustainable Development of the Tibetan Plateau. Pp. 5–13. Kluwer Academic, Dordercht, the Netherlands 2000.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • H. Q. Li
    • 1
    • 2
  • F. W. Zhang
    • 1
    • 2
  • Y. N. LI
    • 1
    • 2
  • G. M. Cao
    • 1
    • 2
  • L. Zhao
    • 1
    • 2
  • X. Q. Zhao
    • 1
    • 2
  1. 1.Northwest Institute of Plateau BiologyChinese Academy of SciencesXining, QinghaiChina
  2. 2.Key Laboratory of Adaptation and Evolution of Plateau BiotaChinese Academy of SciencesXining, QinghaiChina

Personalised recommendations