, Volume 52, Issue 2, pp 288–300 | Cite as

The potential of leaf chlorophyll content to screen bread-wheat genotypes in saline condition

  • A. Kiani-Pouya
  • F. Rasouli


Physiological traits, which are positively associated with yield under salt-stress conditions, can be useful selection criteria in screening for salt tolerance. We examined whether chlorophyll (Chl) content can be used as screening criterion in wheat. Our study involved 5 wheat genotypes under both saline and nonsaline field conditions as well as in a sand-culture experiment. Salt stress reduced significantly biomass, grain yield, total Chl and both Chl a and b in all genotypes. In the sand-culture experiment, Chl accumulation was higher in PF70354/BOW, Ghods, and H499.71A/JUP genotypes at nonsaline control, moderate, and high salt concentrations, respectively. In the field experiment, genotype H499.71A/JUP belonged to those with the highest Chl density. The SPAD (Soil Plant Analysis Development) meter readings were linearly related to Chl content both in the sand-culture and in the field experiment. However, salt stress affected the calibration of SPAD meter. Therefore, separate Chl-SPAD equations were suggested for saline and nonsaline conditions. The correlation coefficients between the grain yield and SPAD were positive and significant both in the sand culture and in the field experiment. These findings suggested that SPAD readings could be used as a tool for rapid assessment of relative Chl content in wheat genotypes. It could be used for the indirect selection of high-yielding genotypes of wheat under saline condition in sand-culture and field experiments.

Additional key words

biomass NaCl SPAD Triticum aestivum L. 







electrical conductivity


early tillering


grain filling


grain yield




high salt stress


late tillering


moderate salt stress


nonsaline conditions


Soil Plant Analysis Development


total chlorophyll


0 mM NaCl+CaCl2


100 mM NaCl+CaCl2


200 mM NaCl+CaCl2


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhtar, J., Saqib, Z.A., Sarfraz, M., Saleem, I., Haq, M.A.: Evaluating salt tolerant cotton genotypes at different levels of NaCl stress in solution and soil culture. — Pak. J. Bot. 42: 2857–2866, 2010.Google Scholar
  2. Arnon, D.I.: Copper enzymes in isolated chloroplast polyphenol oxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Arunyanark, A., Jogloy, S., Akkasaeng, C. et al.: Chlorophyll stability is an indicator of drought tolerance in peanut. — J. Agron. Crop Sci. 194: 113–125, 2008.CrossRefGoogle Scholar
  4. Atlassi Pak, V., Nabipour, M., Meskarbashee, M.: Effect of salt stress on chlorophyll content, fluorescence, Na and K ions content in rape plants (Brassica napus L.). — Asian J. Agric. Res. 3: 28–37, 2009.CrossRefGoogle Scholar
  5. Azizov, I.V., Khanisheva, M.A.: Pigment content and activity of chloroplasts of wheat genotypes grown under saline environment. — P. Azerbaijan Nat. Acad. Sci.-Bio. Sci. 65: 96–98, 2010.Google Scholar
  6. Balouchi, H.R.: Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. — Int. J. Biol. Life Sci. 7: 56–66, 2010.Google Scholar
  7. Basford, K.E., Williams, E.R., Cullis, B.R., Gilmour, A.E.: Experimental design and analysis of variety trials. — In: Cooper, M., Hammer, G.L. (ed.): Plant Adaptation and Crop Improvement. Pp.125–138. CAB International, Wallingford, UK 1996.Google Scholar
  8. Börner, A., Schumann, E., Furste, A. et al.: Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). — Theor. Appl. Genet. 105: 921–936, 2002.PubMedCrossRefGoogle Scholar
  9. Campbell, R.J., Mobley, K.N., Marini, R.P., Pfeiffer, D.G.: Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll. — Hortscience 25: 330–331, 1990.Google Scholar
  10. Cassol, D., De Silva, F.S.P., Falqueto, A.R., Bacarin, M.A.: An evaluation of non-destructive methods to estimate total chlorophyll content. — Photosynthetica 46: 634–636, 2008.CrossRefGoogle Scholar
  11. Chookhampaeng, S.: The effect of salt stress on growth, chlorophyll content, proline content and antioxidative enzymes of pepper (Capsicum annuum L.) seedling. — Eur. J. Sci. Res. 49: 103–109, 2011.Google Scholar
  12. Cooper, M., Delacy, I.H.: Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in peanut plant breeding multi-environment experiment. — Theor. Appl. Genet. 88: 561–572, 1994.PubMedCrossRefGoogle Scholar
  13. Cuin, T.A., Parsons, D., Shabala, S.: Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium. — Funct. Plant Biol. 37: 656–664, 2010.CrossRefGoogle Scholar
  14. Din, J., Khan, S.U., Ali, I.: Physiological response of wheat (Triticum aesitivum L.) varieties as influenced by salinity stress — J. Anim. Plant Sci. 18: 125–129, 2008.Google Scholar
  15. El-Hendawy, S.E., Hu, Y., Schmidhalter, U.: Assessing the suitability of various physiological traits to screen wheat genotypes for salt tolerance. — J. Integr. Plant Biol. 49: 1352–1360, 2007.CrossRefGoogle Scholar
  16. El-Hendawy S.E, Ruan, Y., Hu, Y., Schmidhalter, U.: A comparison of screening criteria for salt tolerance in wheat under field and controlled environmental conditions. — J. Agron. Crop Sci. 195: 356–367, 2009.CrossRefGoogle Scholar
  17. Flowers, T.J., Duque, E., Hajibagheri, M.A., Mc Gonigle, T.P., Yeo, A.R.: The effect of salinity on leaf ultra-structure and net photosynthesis of two varieties of rice: further evidence for a cellular component of salt-resistance. — New Phytol. 100: 37–43, 1985.CrossRefGoogle Scholar
  18. Flowers, T.J., Troke, P.F., Yeo, A.R.: Mechanism of salt tolerance in halophytes. — Annu. Rev. Plant Physiol. 28: 89–121, 1977.CrossRefGoogle Scholar
  19. Ge, Y., Wang, T., Wang, N. et al.: Genetic mapping and localization of quantitative trait loci for chlorophyll content in Chinese cabbage (Brassica rapa ssp. Pekinensis). — Sci. Hortic. 147: 42–48, 2012.CrossRefGoogle Scholar
  20. Ghogdi, E.A., Izadi-Darbandi A., Borzouei, A.: Effects of Salinity on some physiological traits in wheat (Triticum aestivum L.) cultivars. — Indian J. Sci. Tech. 5: 1901–1906, 2012.Google Scholar
  21. Gholamin, R., Khayatnezhad, M.: The effect of end season drought stress on the chlorophyll content, chlorophyll fluorescence parameters and yield in maize cultivars. — Sci. Res. Essays 6: 5351–5357, 2011.Google Scholar
  22. Giunta, F., Motzo, R., Deidda, M.: SPAD readings and associated leaf traits in durum wheat, barley and triticale cultivars. — Euphytica 125: 197–205, 2002.CrossRefGoogle Scholar
  23. Gonzalez, A., Bermejo, V., Gimeno, B.S.: Effect of different physiological traits on grain yield in barley grown under irrigated and terminal water deficit conditions. — J. Agric. Sci. 148: 319–328, 2010.CrossRefGoogle Scholar
  24. Gutiérrez-Rodriguez, M., Reynolds, M.P., Escalante-Estrada, J.A., Gutierrez-Rodriguez, M.T.: Association between canopy reflectance indices and yield and physiological traits in breed wheat under drought and well-irrigated conditions. — Aust. J. Agr. Res. 55: 1139–1147, 2004.CrossRefGoogle Scholar
  25. Hajar, A.S., Heikal, M.M., Maghrabi, Y.M., Abuzinadah, R.A.: Responses of Arachis hypogaea (Peanut) to salinity stress. — J. King A. Univ. Sci. 5: 5–13, 1993.Google Scholar
  26. Hassan, I.A.: Interactive effects of salinity and ozone pollution on photosynthesis, stomatal conductance, growth, and assimilate partitioning of wheat (Triticum aestivum L.). — Photosynthetica 42: 111–116, 2004.CrossRefGoogle Scholar
  27. Hill, C.B., Taylor, J.D., Edwards, J. et al.: Whole genome mapping of agronomic and metabolic traits to identify novel quantitative trait loci in bread wheat grown in a water-limited environment. — Plant Physiol. 162: 1266–1281, 2013.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Johnson G.N., Rumsey, F.J., Headley, A.D., Sheffield, E.: Adaptations to extreme low light in the fern (Trichomanes speciosum). — New Phytol. 148: 423–431, 2000.CrossRefGoogle Scholar
  29. Kancheva, R., Mishev, D.: Colorimetric characteristics for detection of plant chlorophyll variations. — Bulgarian Acad. Sci. 53: 43–46, 2000.Google Scholar
  30. Khan, M.A, Shirazi, M.U., Khan, M.A. et al.: Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). — Pak. J. Bot. 41: 633–638, 2009.Google Scholar
  31. Läuchli, A., Grattan, S.R.: Plant growth and development under salinity stress. — In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (ed.): Advances in Molecular Breeding toward Drought and Salt Tolerant Crops. Pp. 1–32. Springer, New York 2007.CrossRefGoogle Scholar
  32. Lichtenthaler, H.K.: Chlorophylls and carotenoids, pigments of photosynthetic membranes. — In: Colowick S.P., Kaplam, N.O. (ed.): Methods in Enzymology, Vol. 148. Pp. 350–382. Academic Press, San Diego 1987.Google Scholar
  33. Lopes, M.S., Reynolds, M.P., Jalal-Kamali, M.R., Moussa, M., Feltaous, Y., Tahir, I.S.A., Barma, N., Vargas, M., Mannes, Y., Baum, M.: The yield correlations of selectable physiological traits in a population of advanced spring wheat lines grown in warm and drought environments. — Field Crop. Res. 128: 129–136, 2012.CrossRefGoogle Scholar
  34. Maas, E.V., Grattan, S.R.: Crop yields as affected by salinity. — In: Skaggs, R.W., Schilfgaarde, J.V. (ed.): Agricultural Drainage. Agron. Monograph 38. Pp. 55–108. ASA, CSSA, SSA, Madison 1999.Google Scholar
  35. Markwell, J., Osterman, J.C., Mitchell, J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter. — Photosynth. Res. 46: 467–472, 1995.PubMedCrossRefGoogle Scholar
  36. Munir, S., Siddiqi, E.H., Bhatti, K.H. et al.: Assessment of intercultivar variations for salinity tolerance in winter radish (Raphanus sativus L.) using photosynthetic attributes as effective selection criteria. — World Appl. Sci. J. 21: 384–388, 2013.Google Scholar
  37. Munns, R., James, R.A.: Screening methods for salinity tolerance: a case study with tetraploid wheat. — Plant Soil 253: 201–218, 2003.CrossRefGoogle Scholar
  38. Muranaka, S., Shimizu, K., Kato, M.: Ion and osmotic effects of salinity on single-leaf photosynthesis in two wheat cultivars with different drought tolerance. — Photosynthetica 40: 201–207, 2002.CrossRefGoogle Scholar
  39. Netto, A.T., Ampostrini, E., de Oliveira, J.G., Bressan-Smith, R.E.: Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. — Sci. Hortic. 104: 199–209, 2005.CrossRefGoogle Scholar
  40. Ommen, O.E., Donnelly, A., Vanhoutvin, S., van Oijen, M., Manderscheid, R.: Chlorophyll content of spring wheat flag leaves grown under elevated CO2 concentrations and other environmental stresses within the ‘ESPACE wheat’ project. — Eur. J. Agron. 10: 197–203, 1999.CrossRefGoogle Scholar
  41. Reddy, M.P., Vora, A.B.: Changes in pigment composition, Hill reaction activity and saccharides metabolism in Bajra (Pennisetum typhoides S and H) leaves under NaCl salinity. — Photosynthetica 20: 50–55, 1986.Google Scholar
  42. Reynolds, M.P., Delgado, M.I., Gutierrez Rodriguez, M., Larque-Saavedra, A.: Photosynthesis of wheat in a warm, irrigated environment. I. Genetic diversity and crop productivity. — Field Crop. Res. 66: 37–50, 2000.CrossRefGoogle Scholar
  43. Richards, R.A.: Selectable traits to increas crop photosynthesis and yield of grain crops. — J. Exp. Bot. 51: 447–458, 2000.PubMedCrossRefGoogle Scholar
  44. Royo, A., Abió, D.: Salt tolerance in durum wheat cultivar. — Span. J. Agric. Res. 1: 27–35, 2003.Google Scholar
  45. Ruiz-Espinoza, F.H., Murillo-Amador, B., García-Hernández, J.L. et al.: Field evaluation of the relationship between chlorophyll content in basil leaves and a portable chlorophyll meter (SPAD-502) readings. — J. Plant Nutr. 33: 423–438, 2010.CrossRefGoogle Scholar
  46. Saad, M.S., Ramanatha Rao, V.: Establishment and management of field genebank. Pp.122. IPGRI-APO, Serdang 2001.Google Scholar
  47. Shalhevet, L., Hsiao, T.C.: Salinity and drought: A comparison of their effects on osmotic adjustment, assimilation, transpiration and growth. — Irrigation Sci. 7: 249–264, 1986.CrossRefGoogle Scholar
  48. Shannon, M.C.: Adaptation of plants to salinity. — Adv. Agron. 60: 75–120, 1997CrossRefGoogle Scholar
  49. Santos, C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. — Sci. Hortic. 103: 93–99, 2004.CrossRefGoogle Scholar
  50. Shi, J.Q., Li, R.Y., Qiu, D. et al.: Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. — Genetics 182: 851–861, 2009.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Tammam, A.A., Abou Alhamd, M.F., Hemeda, M.M.: Study of salt tolerance in wheat (Triticum aestivum L.) cultivar Banysoif 1. — Aust. J. Crop Sci. 1: 115–125, 2008.Google Scholar
  52. Tavakkoli, E., Rengasamy, P., McDonald, G.K.: High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. — J. Exp. Bot. 61: 4449–4459, 2010.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Uddling, J., Gelang-Alfredsson, J., Piikki, K., Pleijel, H.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. — Photosynth. Res. 91: 37–46, 2007.PubMedCrossRefGoogle Scholar
  54. Zhang, K.P., Fang, Z.J., Liang, Y., Tian, J.C.: Genetic dissection of chlorophyll content at different growth stages in common wheat. — J. Genet. 88: 183–189, 2009.PubMedCrossRefGoogle Scholar
  55. Zhang, S. R., Song, J., Wang, H., Feng, G.: Effect of salinity on seed germination, ion content and photosynthesis of cotyledons in halophytes or xerophyte growing in Central Asia. — J. Plant Ecol. 3: 259–267, 2010.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  1. 1.Department of Salinity ResearchResearch Center for Agriculture and Natural ResourcesFarsIran

Personalised recommendations