Photosynthetica

, Volume 52, Issue 2, pp 281–287 | Cite as

Specific photosynthetic and morphological characteristics allow macroalgae Gloiopeltis furcata (Rhodophyta) to survive in unfavorable conditions

  • L. Huan
  • S. Gao
  • X. J. Xie
  • W. R. Tao
  • G. H. Pan
  • B. Y. Zhang
  • J. F. Niu
  • A. P. Lin
  • L. W. He
  • G. C. Wang
Article

Abstract

Gloiopeltis furcata (Postels & Ruprecht) J. Agardh, a macroalga, which grows in an upper, intertidal zone, can withstand drastic environmental changes caused by the periodic tides. In this study, the photosynthetic and morphological characteristics of G. furcata were investigated. The photosynthetic performance and electron flows of the thalli showed significant variations in response to desiccation and salinity compared with the control group. Both PSII and PSI activities declined gradually when the thalli were under stress. However, the electron transport rate of PSI showed still a low value during severe conditions, while the rate of PSII approached zero. Furthermore, PSI activity of the treated thalli recovered faster than PSII after being submerged in seawater. Even though the linear electron flow was inhibited by DCMU [3-(3, 4-dichlorophenyl)-1,1-dimethylurea], the cyclic electron flow could still be restored. The rate of cyclic electron flow recovery declined with the increasing time of dark treatment, which suggested that stromal reductants from starch degradation played an important role in the donation of electrons to PSI. This study demonstrated that PSII was more sensitive than PSI to desiccation and salinity in G. furcata and that the cyclic electron flow around PSI played a significant physiological role. In addition, G. furcata had branches, which were hollow inside and contained considerable quantities of funoran. These might be the most important factors in allowing G. furcata to adapt to adverse intertidal environments.

Additional key words

cyclic electron flow desiccation Dual-PAM morphology salinity 

Abbreviations

AWC

absolute water content

DBMIB

dibromothymoquinone

DCMU

3-(3,4-dichlorophenyl)-1,1-dimethylurea

ETR

electron transport rate

FNR

ferredoxin-NADP+ reductase

F0

minimum fluorescence

Fv/Fm

maximum quantum yield of PSII

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aro, E.M., Virgin, I., Andersson, B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. — BBA-Bioenergetics 1143: 113–134, 1993.PubMedCrossRefGoogle Scholar
  2. Bell, E.C.: Photosynthetic response to temperature and desiccation of the intertidal alga Mastocarpus papillatus. — Mar. Biol. 117: 337–346, 1993.CrossRefGoogle Scholar
  3. Bennoun, P.: Evidence for a respiratory chain in the chloroplast. — P. Natl. Acad. Sci.-Biol. 79: 4352–4356, 1982.CrossRefGoogle Scholar
  4. Bukhov, N., Carpentier, R.: Alternative photosystem I-driven electron transport routes: mechanisms and functions. — Photosynth. Res. 82: 17–33, 2004.PubMedCrossRefGoogle Scholar
  5. Bukhov, N., Egorova, E., Carpentier, R.: Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units. — Planta 215: 812–820, 2002.PubMedCrossRefGoogle Scholar
  6. Chengkui, Z.: Phycological research in the development of the Chinese seaweed industry. — Hydrobiologia 116: 7–18, 1984.CrossRefGoogle Scholar
  7. Cruz, J.A., Salbilla, B.A., Kanazawa, A., Kramer, D.M.: Inhibition of plastocyanin to P700+ electron transfer in Chlamydomonas reinhardtii by hyperosmotic stress. — Plant Physiol. 127: 1167–1179, 2001.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Davison, I.R., Pearson, G.A.: Stress tolerance in intertidal seaweeds. — J. Phycol. 32: 197–211, 1996.CrossRefGoogle Scholar
  9. Frank, K., Trebst, A.: Quinone binding sites on cytochorome b/c complexes. — Photochem. Photobiol. 61: 2–9, 1995.PubMedCrossRefGoogle Scholar
  10. Gao, S., Shen, S.D., Wang, G.C. et al.: PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp.(Chlorophyta) to survive in desiccated conditions. — Plant Cell Physiol. 52: 885–893, 2011.PubMedCrossRefGoogle Scholar
  11. Gao, S., Wang, G.C.: The enhancement of cyclic electron flow around photosystem I improves the recovery of severely desiccated Porphyra yezoensis (Bangiales, Rhodophyta). — J. Exp. Bot. 63: 4349–4358, 2012.PubMedCrossRefGoogle Scholar
  12. Hayashi, K.T., Okazaki A.: [Agar Handbook. — Korin Study.] Pp. 534–534. Kyoto 1970. [In Japanese]Google Scholar
  13. Heber, U., Walker, D.: Concerning a dual function of coupled cyclic electron transport in leaves. — Plant Physiol. 100: 1621–1626, 1992.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Heber, U., Soni, V., Strasser, R.J.: Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens. — Physiol. Plantarum 142: 65–78, 2011.CrossRefGoogle Scholar
  15. Herbert, S.K., Fork, D.C., Malkin, S.: Photoacoustic measurements in vivo of energy storage by cyclic electron flow in algae and higher plants. — Plant Physiol. 94: 926–934, 1990.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hill, R., Bendall, F.: Function of the two cytochrome components in chloroplasts: a working hypothesis. — Nature 186: 136–137, 1960.CrossRefGoogle Scholar
  17. Hirase, S., Araki, C., Ito, T.: Isolation of agarobiose derivative from the mucilage of Gloiopeltis furcata. — Bull. Chem. Soc. Jpn. 31: 428–431, 1958.CrossRefGoogle Scholar
  18. Hirase, S., Watanabe, K.: Fractionation and structural investigation of funoran. — Proc. Int. Seaweed Symp., 7: 451–454, 1972.Google Scholar
  19. Horváth, E.M., Peter, S.O., Joët, T., et al.: Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. — Plant Physiol. 123: 1337–1349, 2000.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Iwai, M., Takizawa, K., Tokutsu, R. et al.: Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. — Nature 464: 1210–1213, 2010.PubMedCrossRefGoogle Scholar
  21. Joët, T., Cournac, L., Peltier, G., Havaux, M.: Cyclic electron flow around photosystem I in C3 Plants. In vivo control by the redox state of chloroplasts and involvement of the NADHdehydrogenase complex. — Plant Physiol. 128: 760–769, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Johnson, X., Alric, J.: Interaction between starch breakdown, acetate assimilation, and photosynthetic cyclic electron flow in Chlamydomonas reinhardtii. — J. Biol. Chem. 287: 26445–26452, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Joliot, P., Joliot, A.: Cyclic electron transfer in plant leaf. — P. Natl. Acad. Sci USA 99: 10209–10214, 2002.CrossRefGoogle Scholar
  24. Kramer, D.M., Johnson, G., Kiirats, O., Edwards, G.E.: New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. — Photosynth. Res. 79: 209–218, 2004.PubMedCrossRefGoogle Scholar
  25. Laisk, A.: Mathematical modelling of free-pool and channelled electron transport in photosynthesis: evidence for a functional supercomplex around photosystem I. — P. Roy. Soc. B.-Biol. Sci. 251: 243–251, 1993.CrossRefGoogle Scholar
  26. Lin, A.P., Wang, G.C., Yang, F., Pan, G.H.: Photosynthetic parameters of sexually different parts of Porphyra katadai var. hemiphylla (Bangiales, Rhodophyta) during dehydration and re-hydration. — Planta 229: 803–810, 2009.PubMedCrossRefGoogle Scholar
  27. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  28. Murthy, M.S., Rao, Y.N., Faldu, P.J.: Invertase and total amylase activities in Ulva lactuca from different tidal levels, under desiccation. — Bot. Mar. 31: 53–56, 1988.Google Scholar
  29. Oukarroum, A., Strasser, R.J., Schansker, G.: Heat stress and the photosynthetic electron transport chain of the lichen Parmelina tiliacea (Hoffm.) Ach. in the dry and the wet state: differences and similarities with the heat stress response of higher plants. — Photosynth. Res. 111: 303–314, 2012.PubMedCrossRefGoogle Scholar
  30. Park, S.Y., Jung, B.M., Choi, Y.H., Bae, S.J.: Growth inhibition effects of cancer cell lines by Gloiopeltis furcata fractions in vitro. — J. Korean Soc. Food Sci. Nutr. 34: 771–775, 2005.CrossRefGoogle Scholar
  31. Peltier, G., Cournac, L.: Chlororespiration. — Annu. Rev. Plant Biol. 53: 523–550, 2002.PubMedCrossRefGoogle Scholar
  32. Pfündel, E., Klughammer, C., Schreiber, U.: Monitoring the effects of reduced PS II antenna size on quantum yields of photosystems I and II using the Dual-PAM-100 measuring system. — PAM Appl. Notes 1: 21–24, 2008.Google Scholar
  33. Rumeau, D., Peltier, G., Cournac, L.: Chlororespiration and cyclic electron flow around PSI during photosynthesis and plant stress response. — Plant Cell Environ. 30: 1041–1051, 2007.PubMedCrossRefGoogle Scholar
  34. Saeki, Y., Kato, T., Naito, Y., Takazoe, I., Okuda, K.: Inhibitory effects of funoran on the adherence and colonization of mutans streptococci. — Caries Res. 30: 119–125, 1996.PubMedCrossRefGoogle Scholar
  35. Schansker, G., Tóth, S.Z., Strasser, R.J.: Methylviologen and dibromothymoquinone treatments of pea leaves reveal the role of photosystem I in the Chl a fluorescence rise OJIP. — BBA-Bioenergetics 1706: 250–261, 2005.PubMedCrossRefGoogle Scholar
  36. Schreiber, U., Armond, P.A.: Heat-induced changes of chlorophyll fluorescence in isolated chloroplasts and related heat-damage at the pigment level. — Biochim. Biophys. Acta 502: 138–151, 1978.PubMedCrossRefGoogle Scholar
  37. Schreiber, U.: Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. — In: Papaqeorgiou, G., Govindjee (ed.): Chlorophyll a Fluorescence a Signature of Photosynthesis. Pp. 279–319. Springer, Dordrecht 2004.CrossRefGoogle Scholar
  38. Smith, C.M., Berry, J.A.: Recovery of photosynthesis after exposure of intertidal algae to osmotic and temperature stresses: comparative studies of species with differing distributional limits. — Oecologia 70: 6–12, 1986.CrossRefGoogle Scholar
  39. Smith, C.M., Satoh, K., Fork, D.C.: The effects of osmotic tissue dehydration and air drying on morphology and energy transfer in two species of Porphyra. — Plant Physiol. 80: 843–847, 1986.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Sven, B., Eshel, A.: Photosynthesis of Ulva sp. I. effects of desiccation when exposed to air. — J. Exp. Mar. Biol. Ecol. 70: 91–97, 1983.CrossRefGoogle Scholar
  41. Tao, P., Xu, Q.L., Yao, J.G., Gao X.: [An analysis of nutrient components of thirteen kinds of seaweeds for food in Dalian coastline.] — J. Liaoning Normal Univ. (Nat. Sci. Ed.) 24: 406–410, 2001. [In Chinese]Google Scholar
  42. Tóth, S.Z., Schansker, G., Kissimon, J. et al.: Biophysical studies of photosystem II-related recovery processes after a heat pulse in barley seedlings (Hordeum vulgare L.). — J. Plant Physiol. 162: 181–194, 2005.PubMedCrossRefGoogle Scholar
  43. Xu, D.H., Li, J.H., Fang, X.W., Wang, G., Su, P.X.: Photosynthetic activity of poikilochlorophyllous desiccation tolerant plant Reaumuria soongorica during dehydration and rehydration. — Photosynthetica 46: 547–551, 2008.CrossRefGoogle Scholar
  44. Yamane, Y., Kashino, Y., Koike, H., Satoh, K.: Increases in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. — Photosynth. Res. 52: 57–64, 1997.CrossRefGoogle Scholar
  45. Yang, R.L., Zhou, W., Shen, S.D. et al.: Morphological and photosynthetic variations in the process of spermatia formation from vegetative cells in Porphyra yezoensis Ueda (Bangiales, Rhodophyta) and their responses to desiccation. — Planta 235: 885–893, 2012.PubMedCrossRefGoogle Scholar
  46. Yu, J., Xu, Z.C., Yan, L.L., Cheng, S.J.: [Studies on the antimutagenic and anti-tumor effects of the polysaccharide of Gloipeltis furcata.] — J. Shantou Univ. 22: 59–63, 2007. [In Chinese]Google Scholar
  47. Yu, J., Chen, M.Z., Xu, Z.C., Cui, S.C., Tang, W.: [Antitumor effects of the polysaccharides from Gloiopeltis furcata on H22 tumor bearing mice.] — Chin. J. Mar. Drugs 28: 40–43, 2009. [In Chinese]Google Scholar
  48. Zeng, C.K., Xia, B.M., Ding, L.P. et al.: Seaweeds in Yellow sea and Bohai Sea of China. Pp. 143–145. Science Press, Beijing 2008.Google Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  • L. Huan
    • 1
    • 2
  • S. Gao
    • 1
    • 2
  • X. J. Xie
    • 3
  • W. R. Tao
    • 3
  • G. H. Pan
    • 3
  • B. Y. Zhang
    • 1
  • J. F. Niu
    • 1
  • A. P. Lin
    • 1
  • L. W. He
    • 1
  • G. C. Wang
    • 1
  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.College of Earth SciencesUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Tianjin Key Laboratory of Marine Resources and Chemistry, College of Marine Science and EngineeringTianjin University of Science and TechnologyTianjinChina

Personalised recommendations