, Volume 52, Issue 2, pp 223–232 | Cite as

Effects of light intensity and temperature on the photosynthetic irradiance response curves and chlorophyll fluorescence in three picocyanobacterial strains of Synechococcus

  • S. Jodłowska
  • S. Śliwińska


Chrococcoid cyanobacteria of the genus Synechococcus are the important component of marine and freshwater ecosystems. Picocyanobacteria comprise even 80% of total cyanobacterial biomass and contribute to 50% of total primary cyanobacterial bloom production. Chlorophyll (Chl) fluorescence and photosynthetic light response (P-I) curves are commonly used to characterize photoacclimation of Synechococcus strains. Three brackish, picocyanobacterial strains of Synechococcus (BA-132, BA-124, BA-120) were studied. They were grown under 4 irradiances [10, 55, 100, and 145 μmol(photon) m−2 s−1] and at 3 temperatures (15, 22.5, and 30°C). Photosynthetic rate was measured by Clark oxygen electrode, whereas the Chl fluorescence was measured using Pulse Amplitude Modulation fluorometer. Based on P-I, two mechanisms of photoacclimation were recognized in Synechococcus. The maximum value of maximum rate of photosynthesis (P max) expressed per biomass unit at 10 μmol(photon) m−2 s−1 indicated a change in the number of photosynthetic units (PSU). The constant values of initial slope of photosynthetic light response curve (α) and the maximum value of P max expressed per Chl unit at 145 μmol(photon) m−2 s−1 indicated another mechanism, i.e. a change in PSU size. These two mechanisms caused changes in photosynthetic rate and its parameters (compensation point, α, saturation irradiance, dark respiration, P max) upon the influence of different irradiance and temperature. High irradiance had a negative effect on fluorescence parameters, such as the maximum quantum yield and effective quantum yield of PSII photochemistry (φPSII), but it was higher in case of φPSII.

Additional key words

fluorescence irradiance photoacclimation photosynthesis picocyanobacteria temperature 



analysis of variance


Culture Collection of Baltic Algae




saturation irradiance


maximum quantum yield of PSII photochemistry


number of cells


optical density


photosynthetically active radiation


Pulse Amplitude Modulation


compensation point


photosynthetic light response


maximum photosynthetic rate


net photosynthetic rate


photosynthetic units


dark respiration rate


transmission electron microscope


effective quantum yield of PSII photochemistry


initial slope of photosynthetic light response curve


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albertano, P., Di Somma, D., Capucci, E.: Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image-analyzed fluorescence microscopy. — J. Plankton Res. 19: 1405–1416, 1997.CrossRefGoogle Scholar
  2. Antia, N.J.: Effects of temperature on the darkness survival of marine microplanktonic algae. — Microb. Ecol. 3: 41–54, 1976.PubMedCrossRefGoogle Scholar
  3. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.PubMedCrossRefGoogle Scholar
  4. Blackburn, S.I., McCausland, M.A., Bolch, C.J.S., Newman, S.J., Jones, G.J.: Effect of salinity and toxin production in cultures of the bloom-forming cyanobacterium Nodularia spumigena from Australian waters. — Phycologia 35: 511–522, 1996.CrossRefGoogle Scholar
  5. Callieri, C., Moro, S., Caravati, E., Crosbie, N.D., Weisse, T.: Strain-specific photosynthetic response of freshwater picocyanobacteria. — Verh. Internat. Verein. Limnol. 29: 777–782, 2005.Google Scholar
  6. Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., Öquist, G.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. — Microbiol. Mol. Biol. R. 62: 667–683, 1998.Google Scholar
  7. Defew, E.C., Perkins, R.G., Paterson, D.M.: The influence of light and temperature interactions on a natural estuarine microphytobenthic assemblage. — Biofilms 1: 21–30, 2004.CrossRefGoogle Scholar
  8. Dring, M.J.: The Biology of Marine Plants. 199 pp. Cambridge Univ. Press, Cambridge 1998.Google Scholar
  9. Dubinsky, A., Stambler, N.: Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. — Aquat. Microb. Ecol. 56: 163–176, 2009.CrossRefGoogle Scholar
  10. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical Research. 6th ed. 138 pp. Olivier and Boyd, Edinburgh 1963.Google Scholar
  11. Fogg, G.E.: Ocean ecology: Light and Ultraphytoplankton. 99 pp. Nature Publishing Group, London 1986.Google Scholar
  12. Fogg, G.E., Thake, B.: Algal Cultures and Phytoplankton Ecology. 269 pp. University of Wisconsin Press, Madison and Milwaukee 1987.Google Scholar
  13. Glover, H. E., Phinney, D.A., Yentsch, C.S.: Photosynthetic characteristics of picoplankton compared with those of larger phytoplankton populations, in various water masses in the Gulf of Maine. — Biological Oceanogr. 3: 223–248, 1985.Google Scholar
  14. Hajdu, S., Höglander, H., Larsson, U.: Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. — Harmful Algae 6: 189–205, 2007.CrossRefGoogle Scholar
  15. Henley, W.J.: Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. — J. Phycol. 29: 729–739, 1993.CrossRefGoogle Scholar
  16. Ibelings, B.W.: Changes in photosynthesis in response to combined irradiance and temperature stress in cyanobacterial surface waterblooms. — J. Phycol. 32: 549–557, 1996.CrossRefGoogle Scholar
  17. Jasser, I.: The relationship between autotrophic picoplankton (APP) — the smallest autotrophic component of food web and the trophic status and depth of lakes. — Ecohydrol. Hydrobiol. 6: 69–77, 2006.CrossRefGoogle Scholar
  18. Jasser, I., Arvola, L.: Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. — J. Plankton Res. 25: 873–883, 2003.CrossRefGoogle Scholar
  19. Jodłowska, S., Śliwińska, S., Latała, A.: The influence of irradiance on the growth and photosynthetic pigments of three Baltic picocyanobacterial strains of Synechococcus. — In: Olańczuk-Neymen, K., Mazur-Marzec, H. (ed.): Microorganisms in the Environment and Environmental Engineering from Ecology to Technology. Pp. 85–92. Monografie Komitetu Inżynierii Środowiska PAN, no. 64, Zabrze 2010.Google Scholar
  20. Jodłowska, S., Latała, A.: Photoacclimation strategies in toxic cyanobacterium Nodularia spumigena (Nostocales, Cyanobacteria) — Phycologia 49: 203–211, 2010.CrossRefGoogle Scholar
  21. Jodłowska, S., Latała, A.: Mechanisms of photoacclimation on photosynthesis level in Cyanobacteria. — In: Najafpour, M.M. (ed.): Advances in Photosynthesis — Fundamental Aspects. Pp. 97–108. InTech, Croatia, 2012.Google Scholar
  22. Jodłowska, S., Latała, A.: Combined effects of light and temperature on growth, photosynthesis, and pigment content in the mat-forming cyanobacterium Geitlerinema amphibium. — Photosynthetica 51: 202–214, 2013.CrossRefGoogle Scholar
  23. Kahru, M., Leppänen, J.-M., Rud, O., Savchuk, O.P.: Cyano-bacterial blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. — Mar. Ecol. Prog. Ser. 207: 13–18, 2000.CrossRefGoogle Scholar
  24. Kana, T.M., Glibert, P.M.: Effect of irradiances up to 2000 μmol E m−2 s−1 on marine Synechococcus WH7803-I. Growth, pigmentation, and cell composition. — Deep-Sea Res. 34: 479–495, 1987.CrossRefGoogle Scholar
  25. Kulk, G., van de Poll, W.H., Visser, R.J.W, Buma, A.G.J.: Distinct differences in photoacclimation potential between prokaryotic and eukaryotic oceanic phytoplankton. — J. Exp. Mar. Biol. Ecol. 398: 63–72, 2011.CrossRefGoogle Scholar
  26. Latała, A., Jodłowska, S., Pniewski, F.: Culture Collection of Baltic Algae (CCBA) and characteristic of some strains by factorial experiment approach. — Algological Studies, 122: 137–154, 2006.CrossRefGoogle Scholar
  27. Mackey, K.R.M., Paytan, A., Grossman, A.R., Bailey, S.: A photosynthetic strategy for coping in a high light, low nutrient environment. — Limnol. Oceanogr. 53: 900–913, 2008.CrossRefGoogle Scholar
  28. MacIntyre, H.L., Kana, T.M., Anning, T., Geider, R.J.: Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and Cyanobacteria. — J. Phycol. 38: 17–38, 2002.CrossRefGoogle Scholar
  29. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.PubMedCrossRefGoogle Scholar
  30. Mouget, J.-L., Tremblin, G., Morant-Manceau, A., Morancais, M., Robert, J.-M.: Long-term photoacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. — Eur. J. Phycol. 34: 109–115, 1999.CrossRefGoogle Scholar
  31. Oktaba, W.: [Methods of Mathematical Statistics in Experiments]. 488 pp. PWN, Warszawa 1986. [In Polish]Google Scholar
  32. Panosso, R., Graneli, E.: Effects of dissolved organic matter on the growth of Nodularia spumigena (Cyanophyceae) cultivated under N or P deficiency. — Mar. Biol. 136: 331–336, 2000.CrossRefGoogle Scholar
  33. Platt, T., Jassby, A.D.: The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. — J. Phycol. 12: 421–430, 1976.Google Scholar
  34. Platt. T, Gallegos, C.L., Harrison, W.G.: Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. — J. Mar. Res. 38: 687–701, 1980.Google Scholar
  35. Prézelin, B.B.: Light reactions in photosynthesis. — Can. B. Fish. Aquat. Sci. 210: 1–43, 1981.Google Scholar
  36. Ramus, J.: The capture and transduction of light energy. — In: Lobban, C.S., Wynne, M.J. (ed.): The Biology of Seaweeds. Pp. 458–492. Blackwell Scientific, Oxford 1981.Google Scholar
  37. Richardson, K., Beardall, J., Raven, J.A.: Adaptation of unicellular algae to irradiance: an analysis of strategies. — New Phytol. 93: 157–191, 1983.CrossRefGoogle Scholar
  38. Richardson, T.L., Jackson, G.A.: Small phytoplankton and carbon export from the surface ocean. — Science 315: 838–840, 2007.PubMedCrossRefGoogle Scholar
  39. Rohacek, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.CrossRefGoogle Scholar
  40. Six, C., Finkel, Z.V., Irwin, A.J., Campbell, D.A.: Light variability illuminates niche-partitioning among marine picocyanobacteria. — PLOS ONE: doi:10.1371/journal.pone. 0001341, 2007.Google Scholar
  41. Snedecor, G.W., Cochran, W.G.: Statistical Methods. 703 pp. Iowa State University Press, Ames 1980.Google Scholar
  42. Stal, L.J., Walsby, A.E.: Photosynthesis and nitrogen fixation in a cyanobacterial bloom in the Baltic Sea. — Eur. J. Phycol. 35: 97–108, 2000.CrossRefGoogle Scholar
  43. Stal, L.J., Albertano, P., Bergman, B., et al.: BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea — responses to a changing environment. — Cont. Shelf Res. 23: 1695–1714, 2003.CrossRefGoogle Scholar
  44. Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (order Chroococcales). — Bacteriol. Rev. 35: 171–205, 1971.PubMedCentralPubMedGoogle Scholar
  45. Strickland, I.D.H., Parsons, T.R.: A practical handbook of seawater analysis. — Bull. Fish. Res. Bd. Can. 167: 1–310, 1972.Google Scholar
  46. Surosz, W., Palinska, K.A.: Ultrastructural changes induced by selected Cd and Cu concentrations in the cyanobacterium Phormidium: Interaction with salinity. — J. Plant Physiol. 157: 643–650, 2000.CrossRefGoogle Scholar

Copyright information

© The Institute of Experimental Botany 2014

Authors and Affiliations

  1. 1.Laboratory of Marine Plant Ecophysiology, Institute of OceanographyUniversity of GdańskGdyniaPoland

Personalised recommendations