, Volume 52, Issue 1, pp 148–151 | Cite as

Different responses of young and expanded lettuce leaves to fungicide Mancozeb: chlorophyll fluorescence, lipid peroxidation, pigments and proline content

  • M. C. Dias
  • P. Figueiredo
  • I. F. Duarte
  • A. M. Gil
  • C. Santos
Brief Communication


This work aimed to study the effects of commercial doses of the fungicide, Mancozeb, on the photosynthetic apparatus of lettuce young leaves (YL) and expanded leaves (EL). Seven days after Mancozeb application, chlorophyll a fluorescence, pigment contents, lipid peroxidation, and proline content were evaluated. Independently of leaf age, Mancozeb treatment reduced the efficiency of photosystem II photochemistry, increased the nonphotochemical quenching and proline content, decreased pigment contents, and induced lipid peroxidation. Moreover, EL showed a more stable photosynthetic apparatus, less prone to oxidative damages compared with YL. The parameters measured proved to be good markers for the rapid and preliminary diagnosis of fungicide toxicity.

Additional key words

anthocyanins dithiocarbamates photosynthetic efficiency toxicity 







dry mass


expanded leaves


maximal efficiency of PSII




nonphotochemical quenching


photosystem II


photochemical quenching


reactive oxygen species


young leaves


effective quantum efficiency of PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bremer, H, Bünemann, G.: [Side effects of organic scab fungicides. I. Leaf spots and leaf drop in Golden Delicious apple tree.] — Gartenbauwisenschaf. 47:204–211, 1982. [In German]Google Scholar
  2. Calatayud, A., Barreno, E.: Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. — Environ. Pollut. 115: 283–289, 2001.PubMedCrossRefGoogle Scholar
  3. Dias, M.C.: Phytotoxicity: An overview of the physiological responses of plants exposed to fungicides. — J. Bot. 2012:1–4, 2012.CrossRefGoogle Scholar
  4. Dias, M.C., Pinto G., Correia C.M., et al.: Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. — Biol. Plantarum 57: 33–40, 2013.CrossRefGoogle Scholar
  5. Dias, M.C., Pinto, G., Santos, C.: Acclimatization of micropropagated plantlets induces an antioxidative burst: a case study with Ulmus minor Mill. — Photosynthetica 49: 259–266, 2011.CrossRefGoogle Scholar
  6. Garcia, P.C., Ruiz, J.M., Rivero, R.M., et al..: Is the application of carbendazim harmful to healthy plants? Evidence of weak phytotoxicity on tobacco. — J. Agr. Food Chem. 50: 279–283, 2002.CrossRefGoogle Scholar
  7. Gopi, R., Jaleel, C.A., Sairam, R., et al.: Differential effects of hexaconazole and paclobutrazol on biomass, electrolyte leakage, lipid peroxidation and antioxidant potential of Daucus carota L. — Colloid Surface B 60: 180–186, 2007.CrossRefGoogle Scholar
  8. Gullino, M.L., Tinivella, F., Garibaldi, A., et al.: Mancozeb: Past, Present, and Future. — Plant Dis. 94: 1076–1087, 2010.CrossRefGoogle Scholar
  9. Jaleel, C.A., Gopi, R., Panneerselvam, R.: Alterations in lipid peroxidation, electrolyte leakage, and proline metabolism in Catharanthus roseus under treatment with triadimefon, a systemic fungicide. — C. R. Biol. 330: 905–912, 2007.PubMedCrossRefGoogle Scholar
  10. Khedr, A.H.A., Abbas, M.A., Wahid, A.A.A., et al.: Proline induces the expression of salt-stress-responsive proteins and may improve the adoption of Pancratium maritimum L. to salt stress. — J. Exp. Bot. 54: 2553–2562, 2003.PubMedCrossRefGoogle Scholar
  11. Lorenz, E.J., Cothren, J.T.: Photosynthesis and yield of wheat (Triticum aestivum) treated with fungicides in a disease-free environment. — Plant Dis. 73:25–27, 1989.CrossRefGoogle Scholar
  12. Petit, A.N., Fontaine, F., Clément, C., Vailant-Gaveau, N.: Photosynthesis limitations of grapevine after treatment with the fungicide fludioxonil. — J. Agr. Food Chem. 56: 6761–6767, 2008.CrossRefGoogle Scholar
  13. Petit, A.N., Fontaine, F., Vatsa, P., Clément, C., Vailant-Gaveau, N.: Fungicide impacts on photosynthesis in crop plants. — Photosynth. Res. 111: 315–326, 2012.PubMedCrossRefGoogle Scholar
  14. Saladin, G., Magné, C., Clément, C.: Effects of fludioxonil and pyrimethanil, two fungicides used against Botrytis cinerea, on carbohydrate physiology in Vitis vinifera L. — Pest. Manag. Sci. 59: 1083–1092, 2003.PubMedCrossRefGoogle Scholar
  15. Sims, D.A., Gamon, J.A.: Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. — Remote Sens. Environ. 81: 337–354, 2002.CrossRefGoogle Scholar
  16. Smital, T., Luckenbach, T., Sauerborn, R., et al.: Emerging contaminants-pesticides, PPCPs, microbial degradation products and natural substances as inhibitors of multixenobiotic defense in aquatic organisms. — Mutat. Res.-Fund. Mol. M. 552: 101–117, 2004.CrossRefGoogle Scholar
  17. Solymosi, K., Schoefs, B.: Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. — Photosynth Res. 105: 143–166, 2010.PubMedCrossRefGoogle Scholar
  18. Untiedt, R., Blanke, M.M.: Effects of fungicide and insecticide mixtures on apple tree canopy photosynthesis, dark respiration and carbon economy. — Crop Prot. 23: 1001–1006, 2004.CrossRefGoogle Scholar
  19. van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology. — Photosynth. Res. 25: 147–150, 1990.PubMedCrossRefGoogle Scholar
  20. Xia, X.H., Huang, Y.Y., Wang, L., et al.: Pesticides-induced depression of photosynthesis was alleviated by 24-epibrassinolide pretreatment in Cucumis sativus L. — Pestic. Biochem. Phys. 86: 42–48, 2006.CrossRefGoogle Scholar
  21. Zhang, K.M., Yu, H.J., Shi, K., et al.: Photoprotective roles of anthocyanins in Begonia semperflorens. — Plant Sci. 179: 202–208, 2010.CrossRefGoogle Scholar
  22. Wu, Y.-X., Tiedemann, A.: Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. — Environ. Pollut. 116: 37–47, 2002.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • M. C. Dias
    • 1
  • P. Figueiredo
    • 2
  • I. F. Duarte
    • 2
  • A. M. Gil
    • 2
  • C. Santos
    • 1
  1. 1.Department of Biology & CESAMUniversity of AveiroAveiroPortugal
  2. 2.CICECO & Department of ChemistryCampus Universitário de Santiago, University de AveiroAveiroPortugal

Personalised recommendations