Advertisement

Photosynthetica

, Volume 52, Issue 1, pp 117–123 | Cite as

A modified nonrectangular hyperbola equation for photosynthetic light-response curves of leaves with different nitrogen status

  • J. Z. Xu
  • Y. M. Yu
  • S. Z. Peng
  • S. H. Yang
  • L. X. Liao
Original Paper

Abstract

Chlorophyll index and leaf nitrogen status (SPAD value) was incorporated into the nonrectangular hyperbola (NRH) equation for photosynthetic light-response (PLR) curve to establish a modified NRH equation to overcome the parameter variation. Ten PLR curves measured on rice leaves with different SPAD values were collected from pot experiments with different nitrogen (N) dosages. The coefficients of initial slope of the PLR curve and the maximum net photosynthetic rate in NRH equation increased linearly with the increase of leaf SPAD. The modified NRH equation was established by multiplying a linear SPAD-based adjustment factor with the NRH equation. It was sufficient in describing the PLR curves with unified coefficients for rice leaf with different SPAD values. SPAD value, as the indicator of leaf N status, could be used for modification of NRH equation to overcome the shortcoming of large coefficient variations between individual leaves with different N status. The performance of the SPAD-modified NRH equation should be further validated by data collected from different kinds of plants growing under different environments.

Additional key words

leaf nitrogen modified nonrectangular hyperbola equation Oryza sativa photosynthetic light-response curve SPAD 

Abbreviations

AE

absolute error

Chl

chlorophyll

N

nitrogen

N1, N2

the nitrogen fertilization rates, namely 300 (N1) and 200 (N2) kg(N) ha−1

PN

net photosynthetic rate

PNmax

maximum net photosynthetic rate

PLR

photosynthetic light response

PPFD

photosynthetically photon flux density

RD

dark respiration

RMSE

root mean square error

α

initial slope of the PLR curve

β

parameter introduced by incorporating the SPAD-based factor into NRH equation

Θ

parameter of the convexity of the PLR curve

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akhkha, A.: Modelling photosynthetic light-response curve in Calotropis procera under salinity or water deficit stress using non-linear models. — J. Taibah Univ. Sci. 3: 49–57, 2010.CrossRefGoogle Scholar
  2. Akhkha, A., Reid, I., Clarke., Dominy, P.: Photosynthetic light response curve determined with the leaf oxygen electrode: minimization of errors and significance of the convexity term. — Planta 214: 135–141, 2001.PubMedCrossRefGoogle Scholar
  3. Balasubramanian, V., Morales, A.C., Cruz, R.T. et al.: Adaptation of the chlorophyll meter (SPAD) technology for real-time N management in rice: A review. — Int. Rice Res. Notes 25: 4–8, 2000.Google Scholar
  4. Calama, R., Puértolas, J., Madrigal, G., Pardos, M.: Modeling the environmental response of leaf net photosynthesis in Pinus pinea L. natural regeneration. — Ecol. Model. 251: 9–21, 2013.CrossRefGoogle Scholar
  5. Chiarawipa, R., Wang, Y., Zhang, X.Z. et al.: Modeling light acclimation of photosynthetic response in different ages of vine leaves. — Acta Hort. 956: 255–260, 2012.Google Scholar
  6. Cook, M.G., Evans, L.T.: Nutrient responses of seedlings of wild and cultivated Oryza species. — Field Crop Res. 6: 205–218, 1983a.CrossRefGoogle Scholar
  7. Cook, M.G., Evans, L.T.: Some physiological aspects of the domestication and improvement of rice (Oryza spp.). — Field Crop Res. 6: 219–238, 1983b.CrossRefGoogle Scholar
  8. Evans, J.R.: Photosynthesis and nitrogen relationships in leaves of C3 plants. — Oecologia 78: 9–19, 1989.CrossRefGoogle Scholar
  9. Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.PubMedCrossRefGoogle Scholar
  10. Givnish, T.J., Montgomery, R.A., Goldstein, G.: Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. — Am. J. Bot. 91: 228–246, 2004.PubMedCrossRefGoogle Scholar
  11. Ghosh, M., Swain, D.K., Jha, M.K., Tewari, V.K.: Precision nitrogen management using chlorophyll meter for improving growth, productivity and N use efficiency of rice in subtropical climate. — J. Agric. Sci. 5: 254–266, 2013.Google Scholar
  12. Hanson, P.J., Mc Roberts, R.E., Isebrands, J.G., Dixon, R.K.: An optimal sampling strategy for determining CO2 exchange rate as a function of photosynthetic photon flux density. — Photosynthetica 21: 98–101, 1987.Google Scholar
  13. Huang, J.L., He, F., Cui, K.H. et al.: Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. — Field Crop Res. 105: 70–80, 2008.CrossRefGoogle Scholar
  14. Lachapelle, P.P., Shipley, B.: Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance. — Ann. Bot. 109: 1149–1157, 2012.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Lambers, H., Chapin, F.S., Pons, T.L. Plant physiological Ecology. — Springer-Verlag, Berlin — Heidelberg — New York — London — Paris — Tokyo — Hong Kong 1998.CrossRefGoogle Scholar
  16. Leverenz, J.W.: Chlorophyll content and the light response curve of shade-adapted conifer needles. — Physiol. Plantarum 71: 20–29, 1987.CrossRefGoogle Scholar
  17. Ling, Q., Huang, W., Jarvis, P.: Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. — Photosynth. Res. 107: 209–214, 2011.PubMedCrossRefGoogle Scholar
  18. Liu, Z.A, Yang, J.P, Yang, Z.C.: Using a chlorophyll meter to estimate tea leaf chlorophyll and nitrogen contents. — J. Soil Sci. Plant Nutr. 12: 339–348, 2012.CrossRefGoogle Scholar
  19. Loh, F.C.W., Grabosky, J.C., Bassuk, N.L.: Using the SPAD-502 meter to assess chlorophyll and nitrogen content of benjamin fig and cottonwood leaves. — HortTechnology 12: 682–686, 2002.Google Scholar
  20. Marino, G., Aqil, M., Shipley, B.: The leaf economics spectrum and the prediction of photosynthetic light-response curves. — Funct. Ecol. 24: 263–272, 2010.CrossRefGoogle Scholar
  21. Markwell, J., Osterman, J.C., Mitchell, J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter. — Photosynth. Res. 46: 467–472, 1995.PubMedCrossRefGoogle Scholar
  22. Marshall, B., Biscoe, P.V.: A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. — J. Exp. Bot. 120: 29–39, 1980.CrossRefGoogle Scholar
  23. Marschall, M., Proctor, M.C.F.: Are bryophytes shade plants? Photosynthetic light responses and proportions of chlorophyll a, chlorophyll b and total carotenoids. — Ann. Bot. 94: 593–603, 2004.PubMedCrossRefGoogle Scholar
  24. Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K. et al.: Photosynthetic characteristics of rice leaves grown under red light with or without supplemental blue light. — Plant Cell Physiol. 45: 1870–1874, 2004.PubMedCrossRefGoogle Scholar
  25. Murchie, E.H., Hubbart, S., Chen, Y.Z., Peng, S.B., Horton, P.: Acclimation of rice photosynthesis to irradiance under field conditions. — Plant Physiol. 130: 1999–2010, 2002.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Milroy, S.P., Bange, M.P.: Nitrogen and light responses of cotton photosynthesis and implications for crop growth. — Crop Sci. 43: 904–913, 2003.CrossRefGoogle Scholar
  27. Ohsumi, A., Hamasaki, A., Nakagawa, H., Yoshida, H., Shiraiwa, T., Horie, T.: A model explaining genotypic and ontogenetic variation of leaf photosynthetic rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance. — Ann. Bot. 99: 265–273, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Peng, S.B., Laza, M.R.C., Garcia, F.V., Cassman, K.G.: Chlorophyll meter estimates leaf area-based nitrogen concentration of rice. — Commun. Soil Sci. Plan. 26: 927–935, 1995.CrossRefGoogle Scholar
  29. Peng, S.B., Cassman, K.G., Kropff, M.J.: Relationship between leaf photosynthesis and nitrogen content of field-grown rice in tropics. — Crop Sci. 35: 1627–1630, 1995.CrossRefGoogle Scholar
  30. Peng, S., Garcia, F.V., Laza, R.C. et al.: Increased N-use efficiency using a chlorophyll meter on high yielding irrigation rice. — Field Crop Res. 47: 243–252, 1996.CrossRefGoogle Scholar
  31. Piñeiro, G., Perelman, S., Guerschman, J.P., Paruelo, J.M.: How to evaluate models: Observed vs. predicted or predicted vs. observed? — Ecol. Model. 216: 316–322, 2008.CrossRefGoogle Scholar
  32. Prado, C.H.B.A., De Moraes, J.A.P.V.: Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field condition. — Photosynthetica 33: 103–112, 1997.CrossRefGoogle Scholar
  33. Prieto, J.A., Giorgi, E.G., Pena J.P.: Modelling photosyntheticlight response on Syrah leaves with different exposure. — Vitis 49: 145–146, 2010.Google Scholar
  34. Quero, J.L., Villar, R., Marañón, T.: Leaf traits and photosynthesis light response of Quercus suber seedlings grown in a combination of light and water regimes. — In: Vázquez-Piqué, J.; Pereira, H.; González-Pérez, A. (ed.): Suberwood, new Challenges for the Integration of cork Oak Forests and Products. Pp. 75–84. Universidad de Huelva, Huelva 2008.Google Scholar
  35. Rosati, A., Esparza, G., Dejong, T.M., Pearcy, R.W.: Influence of canopy light environment and nitrogen availability on leaf photosynthetic characteristics and photosynthetic nitrogen-use efficiency of field-grown nectarine trees. — Tree Physiol. 19: 173–180, 1999.PubMedCrossRefGoogle Scholar
  36. Singh, B., Singh, Y., Ladha, J.K. et al.: Chlorophyll meter- and leaf color chart-based nitrogen management for rice and wheat in northwestern India. — Agron. J. 94: 821–829, 2001.CrossRefGoogle Scholar
  37. Swain, D.K., Sandip, S.J.: Development of SPAD values of medium- and long-duration rice variety for site-specific nitrogen management. — J. Agron. 9: 38–44, 2010.CrossRefGoogle Scholar
  38. Thornley, J.H.M.: Mathematical Models in Plant Physiology a Quantitative Approach to Problems in Plant and Crop Physiology. — Academic Press, London — New York 1976.Google Scholar
  39. Thornley, J.H.M.: Dynamic model of leaf photosynthesis with acclimation to light and nitrogen. — Ann Bot. 81: 421–430, 1998.CrossRefGoogle Scholar
  40. Uddling, J., Gelang-Alfredsson, J.., Piikki, K., Pleijel, H.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. — Photosynth. Res. 91: 37–46, 2007.PubMedCrossRefGoogle Scholar
  41. Wood, C.W., Reeves, D.W., Himelrick, D.G.: Relationships between chlorophyll meter readings and leaf chlorophyll concentration, N status, and crop yield: a review. — P. Ag. Soc. NZ 23: 1–9, 1993.CrossRefGoogle Scholar
  42. Wright, I.J., Reich, P.B., Westoby, M. et al.: The worldwide leaf economics spectrum. — Nature 428: 821–827, 2004.PubMedCrossRefGoogle Scholar
  43. Xu, H.L., Gauthier, L., Gosselin, A.: Effects of fertigation management on growth and photosynthesis of tomato plants in peat, rockwool and NFI. — Sci. Hortic.-Amsterdam 63:11-20, 1995.Google Scholar
  44. Xu, H.L., Gauthier, L., Desjardins, Y., Gosselin, A.: Photosynthesis in leaves, fruits, stem and petioles of greenhouse-grown tomato plants. — Photosynthetica 33: 113–123, 1997.CrossRefGoogle Scholar
  45. Ye, Z.-P.: A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. — Photosynthetica 45: 637–640, 2007.CrossRefGoogle Scholar
  46. Ye, Z.-P., Suggett, D.J., Robakowski, P., Kang, H.J.: A mechanistic model for the photosynthesis-light response based on the photosynthetic electron transport of photosystem II in C3 and C4 species. — New Phytol. 199: 110–120, 2013.PubMedCrossRefGoogle Scholar
  47. Zhang, D.-Y., Wang, X.-H., Chen, Y., Xu, D.-Q.: Determinant of photosynthetic capacity in rice leaves under ambient air conditions. — Photosynthetica 43: 273–276, 2005.CrossRefGoogle Scholar
  48. Zhou, Y.H., Lam, H.M., Zhang, J.H.: Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. — J. Exp. Bot. 58: 1207–1217, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. Z. Xu
    • 1
    • 2
  • Y. M. Yu
    • 2
  • S. Z. Peng
    • 1
  • S. H. Yang
    • 1
  • L. X. Liao
    • 2
  1. 1.State Key Laboratory of Hydrology-Water Resources and Hydraulic EngineeringHohai UniversityNanjingChina
  2. 2.College of Water Conservancy and Hydropower EngineeringHohai UniversityNanjingChina

Personalised recommendations