, Volume 52, Issue 1, pp 50–56 | Cite as

Acclimation and photoprotection of young gametophytes of Acrostichum danaeifolium to UV-B stress

  • A. M. Randi
  • M. C. A. Freitas
  • A. C. Rodrigues
  • M. Maraschin
  • M. A. Torres
Original Paper


The effect of ultraviolet B radiation (UV-B) on cellular ultrastructure, chlorophyll (Chl), carotenoids, and total phenolics of Acrostichum danaeifolium gametophytes was analyzed. The control group of spores was germinated under standard conditions, while the test group of spores was germinated with additional UV-B for 30 min every day for 34 d. The cell characteristics were preserved in gametophytes irradiated with UV-B, but the number of starch grains increased in the chloroplasts and the more developed grana organization in contrast to the chloroplasts of the control group. Chl a content decreased, while Chl b content increased in the gametophytes cultivated with UV-B for 34 d. Contents of lutein and zeaxanthin decreased and trans-β-carotene concentration was enhanced in the gametophytes irradiated with UV-B. The content of total phenolic compounds increased in the gametophytes cultivated with UV-B. Therefore our data suggest that the gametophytes of A. danaeifolium, a fern endemic to the mangrove biome, were sensitive to enhancement of UV-B radiation at the beginning of their development and they exhibited alterations in their ultrastructure, pigment contents, and protective mechanisms of the photosynthetic apparatus, when exposed to this radiation.

Additional key words

carotenoids chlorophyll gametophyte development phenolic compounds ultrastructure 







fresh mass


photosynthetically active radiation


transmission electron microscopy


ultraviolet radiation


ultraviolet B radiation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balakrishnan, V., Ravindran, K.C., Venkatesan K., Karuppusamy. S.: Effect of UVB supplemental radiation on growth and biochemical characteristics in Crotalaria juncea L. seedlings. — Electron J. Environ. Agr. Food Chem. 4: 1125–1131, 2005.Google Scholar
  2. Boeger, M.R.T., Poulson, M.: [Effects of ultraviolet-B radiation on the foliar morphology of Arabidopsis thaliana L. Heynh. Brassicaceae]. — Acta Bot. Brasil. 20: 329–338, 2006. [In Portuguese].CrossRefGoogle Scholar
  3. Choi, B.Y., Roh, K.S.: UVB Radiation affects chlorophyll and activation of Rubisco by Rubisco activase in Canavalia ensiformis L. leaves. — J. Plant Biol. 46: 117–12, 2003.CrossRefGoogle Scholar
  4. Cuadra, P., Harbornet, J., Waterman, P.: Increases in surface flavonols and photosynthetic pigments in Gnaphalium luteoalbum in response to UV-B radiation. — Phytochemistry 45: 1377–1383, 1997.CrossRefGoogle Scholar
  5. Cuadra, P., Herrera, R., Fajardo, V.: Effects of UVB radiation on the Patagonian Jaborosa magellanica Brisben. — J. Photochem. Photobiol. B Biol. 76: 61–68, 2004.CrossRefGoogle Scholar
  6. Döhler, G., Alt, M.R., Moyse, A.: Assimilation of 15N-ammonia during irradiance with ultraviolet-B and monochromatic light by Thalassiosira rotula. — Compt. Rend. Acad. Sci. Paris 308: 513–518, 1989.Google Scholar
  7. Dyer, A.F.: The culture of fern gametophytes for experimental investigation. — In: Dyer, A.F. (ed.): The Experimental Biology of Ferns. Pp. 235–305 Academic Press, London 1979.Google Scholar
  8. Falkowski, P.G., Raven, J.A.: Aquatic Photosynthesis. — Blackwell Science, Oxford 1997.Google Scholar
  9. Greenberg, B.M., Gaba, V., Canaani, O. et al.: Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. — P. Natl. Acad. Sci. USA 86: 6617–6620, 1989.CrossRefGoogle Scholar
  10. Haapala, J.K., Mörsky, S.K., Saarnio, S. et al.: Long-term effects of elevated UVB radiation on photosynthesis and ultrastructure of Eriophorum russeolum and Warnstorfia exannulata. — Sci. Total Environ. 409: 370–377, 2010.PubMedCrossRefGoogle Scholar
  11. Hamilton, J.G., Zangerl, A.R., DeLucia, E.H., Berenbaum, M.R.: The carbon-nutrient balance hypothesis: its rise and fall. — Ecol. Lett. 4: 86–95, 2001.CrossRefGoogle Scholar
  12. Hilal, M., Parrado, M.F., Rosa, M. et al.: Epidermal lignin deposition in quinoa cotyledons in response to UVB radiation. — Photochem. Photobiol. 79: 205–210. 2004.PubMedCrossRefGoogle Scholar
  13. Jayakumar, M., Eyini, M., Lingakumar, K., Kulandaivelu, G.: Effects of enhanced ultraviolet-B 280–320 nm radiation on growth and photosynthetic activities in aquatic fern Azolla microphylla Kaulf. — Photosynthetica 40: 85–89, 2002.CrossRefGoogle Scholar
  14. Kato, Y. Consequences of ultraviolet radiation on the differentiation and growth of fern gametophytes. — New Phytol. 63: 21–27, 1964.CrossRefGoogle Scholar
  15. Kulandaivelu, G., Daniell, H.: Dichlorophenyl dimethylurea DCMU induced increase in chlorophyll a fluorescence intensity — an index of photosynthetic oxygen evolution in leaves, chloroplasts and algae. — Physiol. Plant. 48: 385–388, 1989.CrossRefGoogle Scholar
  16. Kumari, R., Singh, S., Agrawal, S.B.: Effects of supplemental ultraviolet-B radiation on growth and physiology of a Corus calamus L. Sweet flag. — Acta Biol. Cracov. 51: 19–27, 2009.Google Scholar
  17. Laakso, K., Sullivan, J.H., Huttunen, S.: The effects of UVB radiation on epidermal anatomy in loblolly pine Pinus taeda L. and Scots pine Pinus sylvestris L. — Plant Cell. Environ. 23: 461–472, 2000.CrossRefGoogle Scholar
  18. Lloyd, R.M., Gregg, T.L.: Reproductive biology and gametophyte morphology of Acrostichum danaeifolium from Mexico. — Amer. Fern J. 65: 105–120, 1975.CrossRefGoogle Scholar
  19. Moran, R.C.: Psilotaceae and Salviniaceae. — In: David, G.S., Sousa, M., Knapp, S. (ed.): Flora Mesoamericana. Vol. 1, Pp105–106. Universidad Nacional Autónoma de México, Ciudad de México 1995.Google Scholar
  20. NASA. Ozone hole through the years Earth observatory. Acessed in 02/27/2011.
  21. Nogués, S., Baker, N.R.: Evaluation of the role of damage to photosystem II in the inhibition of CO2 assimilation in pea leaves on exposure to UV-B radiation. — Plant Cell Environ. — 18: 781–787, 1995.CrossRefGoogle Scholar
  22. Page, C.N.: The diversity of ferns. An ecological perspective. — In: Dyer, A.F. (ed.): The Experimental Biology of Ferns. Pp. 10–56. Academic Press, London 1979.Google Scholar
  23. Pinto, M.E., Casati, P., Hsu, T.P. et al.: Effects of UV-B radiation on growth, photosynthesis, UV-B-absorbing compounds and NADP-malic enzyme in bean Phaseolus vulgaris L. grown under different nitrogen conditions. — J. Photochem. Photobiol. 48: 200–209, 1999.CrossRefGoogle Scholar
  24. Piri, E., Babaeian, M., Tavassoli, A., Esmaeilian, Y.: Effects of UV irradiation on plants. — J. Microbiol. 5: 1710–1716, 2011.Google Scholar
  25. Poppe, F., Schimdt, R.A.M., Hanelt, D., Wiencke, C. P.: Effects of UV radiation on the Transmission electron microscopy TEM micrographic images of several red algae. — Phycol. Res. 51: 11–19, 2003.Google Scholar
  26. Qian, P., Qing, Z.: Influence of lanthanum on chloroplast transmission electron microscopy TEM micrographic images of soybean leaves under ultraviolet-B stress. — J. Rare Earth 27: 304–307, 2009.CrossRefGoogle Scholar
  27. Raghavan, V.: Developmental Biology of Fern Gametophytes. — Cambridge Univ. Press, Cambridge 1989.CrossRefGoogle Scholar
  28. Randhir, R., Shetty, P., Shetty, K.: L-DOPA and total phenolic stimulation in dark germinated fava bean in response to peptide and phytochemical elicitors. — Process Biochem. 37: 1247–1256, 2002.CrossRefGoogle Scholar
  29. Ranjbarfordoei, A., van Damme, P., Samson, R.: Elevated ultraviolet-B radiation influences photosynthetic pigments and soluble carbohydrates of sweet almond Prunus dulcis Miller D. Webb. — Electron J. Environ. Agr. Food Chem. 8: 1077–1084, 2009.Google Scholar
  30. Rathinasabapathi, B.: Ferns represent an untapped biodiversity for improving crops for enviromental stress tolerance. — New Phytol. 172: 385–390, 2006.PubMedCrossRefGoogle Scholar
  31. Reynolds, E.S.: The use of lead citrate at high pH as an eletronopaque stain in electron microscopy. — J. Cell Biol. 17: 208–212, 1963.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Rozema, J., Staaij, J.van, Björn, L.O., Caldwell, M.: UV-B as an environmental factor in plant life: stress and regulation. — Trends Ecol. Evol. 12: 22–28, 1997.PubMedCrossRefGoogle Scholar
  33. Sarghein, S.H., Carapetian, J., Khara, J.: Effects of UV on photosynthetic pigments and UV absorving compounds in of Capsicum longum L. — Int. J. Bot. 4: 486–490, 2008.CrossRefGoogle Scholar
  34. Sarghein, S.H., Carapetian, J., Khara, J.: The effects of UV radiation on some structural and ultrastructural parameters in pepper Capsicum longum A.DC. — Turk. J. Biol. 35: 69–77, 2010.Google Scholar
  35. Schaeffer-Novelli, Y.: [Mangrove Ecosystem: between Land and Sea]. — Caribbean Ecol. Res., São Paulo 1995. [In Portuguese]Google Scholar
  36. Schmidt, E.C., Santos, R., Horta, P.A. et al.: Effects of UVB radiation on the agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales): changes in cell organization, growth and photosynthetic performance. — Micron 41: 919–930, 2010.PubMedCrossRefGoogle Scholar
  37. Smith, A.R., Pryer, K.M., Schettpelz, E. et al.: A classification for extant ferns. — Taxon 55: 705–731, 2006.CrossRefGoogle Scholar
  38. Soares, M.L.G.: [Plant structure and degree of disturbance of the mangroves of the lagoon of Tijuca Rio de Janeiro, RJ, Brazil]. — Rev. Brasil. Biol. 59: 503–515, 1999. [In Portuguese].CrossRefGoogle Scholar
  39. Spurr, A.R.: A low viscosity epoxy resin embedding medium for electron microscopy. — J. Ultra. Mol. Struct. R. 26: 31–43, 1969.CrossRefGoogle Scholar
  40. Sullivan, J.H., Teramura, A.H.: The effects of ultraviolet-B radiation on lobelly pine: I. Growth, photosynthesis and pigment production in greenhouse-grown seedlings. — Physiol. Plant. 77: 202–207, 1989.CrossRefGoogle Scholar
  41. Temura, A.H.: Effects of ultraviolet B radiation on the growth and yield of crop plants. — Physiol. Plant. 58: 415–427, 1983.CrossRefGoogle Scholar
  42. Tevini, M., Teramura, A.H.: UV-B effects in terrestrial plants. — Photochem. Photobiol. 50: 479–487, 1989.CrossRefGoogle Scholar
  43. Tryon, R.M., Tryon, A.F.: Ferns and Allied Plants, with Special Reference to Tropical America. — Springer Verlag, New York 1982.CrossRefGoogle Scholar
  44. Wellburn, A.R.: The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. — J. Plant Physiol. — 144: 307–313, 1994.CrossRefGoogle Scholar
  45. Whelan, J., Glaser, E.: Protein import into plant mitochondria. — Plant Mol. Biol. 33: 771–789, 1997.PubMedCrossRefGoogle Scholar
  46. Wilhelm, C., Bida, J., Domin, A. et al.: Interaction between global climate change and the physiological responses of algae. — Photosynthetica 33: 491–503, 1997.CrossRefGoogle Scholar
  47. Xavier, S.R.S., Barros, I.C.L.: [Ferns occurring in mountainous forest fragments in the state of Pernambuco, Brazil.] — Rodriguésia 54:13–21, 2003. [In Portuguese].Google Scholar
  48. Zar, J.H.: Biostatistical Analysis. 3rd Ed. — Prentice Hall, New Jersey 1996.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. M. Randi
    • 1
  • M. C. A. Freitas
    • 1
  • A. C. Rodrigues
    • 1
  • M. Maraschin
    • 2
  • M. A. Torres
    • 3
  1. 1.Department of BotanyFederal University of Santa CatarinaFlorianópolis, SCBrazil
  2. 2.Plant Morphology and Biochemistry LaboratoryFederal University of Santa CatarinaFlorianópolis, SCBrazil
  3. 3.Department of Environmental EngineeringSanta Catarina State UniversityLages, SCBrazil

Personalised recommendations