, Volume 52, Issue 1, pp 36–49 | Cite as

Photosynthesis of two moss crusts from the Tengger Desert with contrasting sensitivity to supplementary UV-B radiation

  • R. Hui
  • X. R. Li
  • R. L. Jia
  • L. C. Liu
  • R. M. Zhao
  • X. Zhao
  • Y. P. Wei
Original Paper


Predicting the effects of increased ultraviolet-B (UV-B) radiation due to stratospheric ozone depletion on temperate desert ecosystems requires better knowledge of the ecophysiological response of common moss species. The aim of the current work was to determine whether elevated UV-B radiation affected photosynthetic performance and chloroplast ultrastructure of two moss crusts and whether response differences were observed between the crusts. In laboratory experiments, Bryum argenteum and Didymodon vinealis, which show microdistributions and are dominant in soil crusts at the Tengger Desert, Northern China, were subjected to four levels of UV-B radiation of 2.75 (control), 3.08, 3.25, and 3.41 W m−2 for 10 days, simulating 0, 6, 9, and 12% of stratospheric ozone at the latitude of Shapotou, respectively. The results showed that chlorophyll a fluorescence parameters (i.e., the maximal quantum yield of PSII photochemistry, the effective quantum yield of PSII photochemistry, and photochemical quenching coefficient), pigment contents, soluble protein contents, and the ultrastructure were negatively influenced by elevated UV-B radiation and the degree of detrimental effects significantly increased with the intensity of UV-B radiation. Moreover, results indicated that B. argenteum was probably more sensitive to supplementary UV-B radiation than D. vinealis. Therefore, we propose the use of B. argenteum crusts as a bioindicator of responses to elevated UV-B radiation.

Additional key words

biological soil crusts chlorophyll a fluorescence photosynthesis ultraviolet-B 



biological soil crusts






days of exposure


the minimal fluorescence of dark-adapted state


the maximal fluorescence of dark-adapted state


the maximal quantum yield of PSII photochemistry


hydroxyl radicals


superoxide anions


phenylalanine ammonia-lyase


photosystem II


photochemical quenching coefficient


reactive oxygen species


ribulose-1,5-bisphosphate carboxylase/oxygenase


transmission electron microscope




the effective quantum yield of PSII photochemistry


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albert, K.R., Mikkelsen, T.N., Ro-Poulsen, H. et al.: Ambient UV-B radiation reduces PSII performance and net photosynthesis in high Arctic Salix arctica. — Environ. Exp. Bot. 73: 10–18, 2011.Google Scholar
  2. Allen, J.F., de Paula, W.B.M., Puthiyaveetil, S., Nield, J.: A structural phylogenetic map for chloroplast photosynthesis. — Trends Plant Sci. 16: 645–655, 2011.PubMedGoogle Scholar
  3. Aráoz, R., Häder, D.P.: Ultraviolet radiation induces both degradation and synthesis of phycobilisomes in Nostoc sp.: a spectroscopic and biochemical approach. — FEMS Microbiol. Ecol. 23: 301–313, 1997.Google Scholar
  4. Atanassova, M., Georgieva, S., Ivancheva, K.: Total phenolic and total flavonoid contents, antioxidant capacity and biological contaminants in medicinal herbs. — J. Univ. Chem. Technol. Metallurgy 46: 81–88, 2011.Google Scholar
  5. Bashandy, T., Taconnat, L., Renou, J.P. et al.: Accumulation of flavonoids in an ntra ntrb mutant leads to tolerance to UV-C. — Mol. Plant 2: 249–258, 2009.PubMedGoogle Scholar
  6. Bassman, J.H., Edwards, G.E., Robberecht, R.: Photosynthesis and growth in seedlings of five forest tree species with contrasting leaf anatomy subjected to supplemental UV-B radiation. — Forest Sci. 49: 176–187, 2003.Google Scholar
  7. Bassman, J.H., Robberecht, R.: Growth and gas exchange in field-grown and greenhouse-grown Quercus rubra following three years of exposure to enhanced UV-B radiation. — Tree Physiol. 26: 1153–1163, 2006.PubMedGoogle Scholar
  8. Belnap, J., Lange, O.L.: Biological Soil Crusts: Structure, Function and Management. — Springer, Berlin 2003.Google Scholar
  9. Belnap, J., Phillips, S.L., Smith, S.D.: Dynamics of cover, UVprotective pigments, and quantum yield in biological soil crust communities of an undisturbed Mojave Desert shrubland. — Flora 202: 674–686, 2007.Google Scholar
  10. Bieza, K., Lois, R.: An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. — Plant Physiol. 126: 1105–1115, 2001.PubMedCentralPubMedGoogle Scholar
  11. Bischof, K., Hanelt, D., Wiencke, C.: Effect of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. — Planta 211: 555–562, 2000.PubMedGoogle Scholar
  12. Bornman, J.F.: New trends in photobiology: Target sites of UV-B radiation in photosynthesis of higher plants. — J. Photoch. Photobiol. B 4: 145–158, 1989.Google Scholar
  13. Bowker, M.A., Reed, S.C., Belnap, J., Phillips, S.L.: Temporal variation in community composition, pigmentation, and Fv/Fm of desert cyanobacterial soil crusts. — Microbial Ecol. 43: 13–25, 2002.Google Scholar
  14. Bowker, M.A., Belnap, J., Davidson, D.W., Phillips, S.L.: Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. — Ecol. Appl. 15: 1941–1951, 2005.Google Scholar
  15. Bowker, M.A., Belnap, J., Davidson, D.W., Goldstein, H.: Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. — J. Appl. Ecol. 43: 152–163, 2006.Google Scholar
  16. Bowker, M.A.: Biological soil crust rehabilitation in theory and practice: an underexploited opportunity. — Restor. Ecol. 15: 13–23, 2007.Google Scholar
  17. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.PubMedGoogle Scholar
  18. Bray, E.A., Baily-Serres, J., Weretilnyk, E.: Responses to abiotic stresses. — In: Buchanan, B., Gruissem, W., Jones, R. (ed.): Biochemistry and Molecular Biology of Plants. Pp. 1158–1203. Wiley, USA 2000.Google Scholar
  19. Çakirlar, H., Çiçek, N., Fedina, I. et al.: NaCl induced crossacclimation to UV-B radiation in four Barley (Hordeum vulgare L.) cultivars. — Acta Physiol. Plant. 30: 561–567, 2008.Google Scholar
  20. Caldwell, M.M., Bornman, J.F., Ballaré, C.L. et al.: Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. — Photochem. Photobiol. Sci. 6: 252–266, 2007.PubMedGoogle Scholar
  21. Cerovic, Z.G., Ounis, A., Cartelat, A. et al.: The use of chlorophyll fluorescence excitation spectra for the nondestructive in situ assessment of UV-absorbing compounds in leaves. — Plant Cell Environ. 25: 1663–1676, 2002.Google Scholar
  22. Chen, L.-Z., Wang, G.-H., Hong, S. et al.: UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. — J. Integr. Plant Biol. 51: 194–200, 2009.PubMedGoogle Scholar
  23. Chimphango, S.B.M., Musil, C.F., Dakora, F.D.: Effects of UVB radiation on plant growth, symbiotic function and concentration of metabolites in three tropical grain legumes. — Funct. Plant Biol. 30: 309–318, 2003.Google Scholar
  24. Choi, B.Y., Roh, K.S.: UV-B radiation affects chlorophyll and activation of Rubisco by Rubisco activase in Canavalia ensiformis L. leaves. — J. Plant Biol. 46: 117–121, 2003.Google Scholar
  25. Csintalan, Z., Tuba, Z., Takács, Z., Laitat, E.: Responses of nine bryophyte and one lichen species from different microhabitats to elevated UV-B radiation. — Photosynthetica 39: 317–320, 2001.Google Scholar
  26. Darby, B.J., Neher, D.A., Belnap, J.: Soil nematode commu nities are ecologically more mature beneath late-than earlysuccessional stage biological soil crusts. — Appl. Soil Ecol. 35: 203–212, 2007.Google Scholar
  27. Deckmyn, G., Martens, C., Impens, I.: The importance of the ratio UV-B/photosynthetic active radiation (PAR) during leaf development as determining factor of plant sensitivity to increased UV-B irradiance: effects on growth, gas exchange and pigmentation of bean plants (Phaseolus vulgaris cv. Label). — Plant Cell Environ. 17: 295–301, 1994.Google Scholar
  28. Eichholz, I., Rohn, S., Gamm, A. et al.: UV-B-mediated flavonoid synthesis in white asparagus (Asparagus officinalis L.). — Food Res. Int. 48: 196–201, 2012.Google Scholar
  29. Fagerberg, W.R., Bornman, J.F.: Ultraviolet-B radiation causes shade-type ultrastructural changes in Brassica napus. — Physiol. Plantarum 101: 833–844, 1997.Google Scholar
  30. Fagerberg, W.R., Bornman, J.F.: Modification of leaf cytology and anatomy in Brassica napus grown under above ambient levels of supplemental UV-B radiation. — Photochem. Photobiol. Sci. 4: 275–279, 2005.PubMedGoogle Scholar
  31. Flint, S.D., Searles, P.S., Caldwell, M.M.: Field testing of biological spectral weighting functions for induction of UVabsorbing compounds in higher plants. — Photochem. Photobiol. 79: 399–403, 2004.PubMedGoogle Scholar
  32. Gehrke, C.: Impacts of enhanced ultraviolet-B radiation on mosses in a subarctic heath ecosystem. — Ecology 80: 1844–1851, 1999.Google Scholar
  33. Germ, M., Kreft, I., Osvald, J.: Influence of UV-B exclusion and selenium treatment on photochemical efficiency of photosystem II, yield and respiratory potential in pumpkins (Cucurbita pepo L.). — Plant Physiol. Biochem. 43: 445–448, 2005.PubMedGoogle Scholar
  34. Guidi, L., Mori, S., Degl’Innocenti, E., Pecchia, S.: Effects of ozone exposure or fungal pathogen on white lupin leaves as determined by imaging of chlorophyll a fluorescence. — Plant Physiol. Biochem. 45: 851–857, 2007.PubMedGoogle Scholar
  35. Guo, D.P., Guo, Y.P., Zhao, J.P. et al.: Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. — Plant Sci. 168: 57–63, 2005.Google Scholar
  36. Haapala, J.K., Mörsky, S.K., Saarnio, S. et al.: Long-term effects of elevated UV-B radiation on photosynthesis and ultrastructure of Eriophorum russeolum and Warnstorfia exannulata. — Sci. Total Environ. 409: 370–377, 2010.PubMedGoogle Scholar
  37. Havaux, M., Kloppstech, K.: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants. — Planta 213: 953–966, 2001.Google Scholar
  38. Hectors, K., Jacques, E., Prinsen, E. et al.: UV radiation reduces epidermal cell expansion in leaves of Arabidopsis thaliana. — J. Exp. Bot. 61: 4339–4349, 2010.PubMedGoogle Scholar
  39. Helliot, B., Swennen, R., Poumay, Y. et al.: Ultrastructural changes associated with cryopreservation of banana (Musa spp.) highly proliferating meristems. — Plant Cell Rep. 21: 690–698, 2003.PubMedGoogle Scholar
  40. Holzinger, A., Lütz, C., Karsten, U., Wiencke, C.: The effect of ultraviolet radiation on ultrastructure and photosynthesis in the red macroalgae Palmaria palmata and Odonthalia dentata from Arctic waters. — Plant Biol. 6: 568–577, 2004.PubMedGoogle Scholar
  41. Holzinger, A., Karsten, U., Lütz, C., Wiencke, C.: Ultrastructure and photosynthesis in the supralittoral green macroalga Prasiola crispa from Spitsbergen (Norway) under UV exposure. — Phycologia 45: 168–177, 2006.Google Scholar
  42. Jia, R.L., Li, X.R., Liu, L.C. et al.: Differential wind tolerance of soil crust mosses explains their micro-distribution in nature. — Soil Biol. Biochem. 45: 31–39, 2012.Google Scholar
  43. Joshi, P., Gartia, S., Pradhan, M.K., Biswal, B.: Photosynthetic response of clusterbean chloroplasts to UV-B radiation: Energy imbalance and loss in redox homeostasis between QA and QB of photosystem II. — Plant Sci. 181: 90–95, 2011.PubMedGoogle Scholar
  44. Kadur, G., Swapan, B., Sunita, K. et al.: Growth enhancement of soybean (Glycine max) upon exclusion of UV-B and UVB/A components of solar radiation: characterization of photosynthetic parameters in leaves. — Photosynth. Res. 94: 299–306, 2007.PubMedGoogle Scholar
  45. Kakani, V.G., Reddy, K.R., Zhao, D., Sailaja, K.: Field crop responses to ultraviolet-B radiation: a review. — Agr. Forest Meteorol. 120: 191–218, 2003.Google Scholar
  46. Keiller, D.R., Holmes, M.G.: Effects of long-term exposure to elevated UV-B radiation on the photosynthetic performance of five broad-leaves tree species. — Photosynth. Res. 67: 229–240, 2001.PubMedGoogle Scholar
  47. Kumari, R., Agrawal, S.B.: Supplemental UV-B induced changes in leaf morphology, physiology and secondary metabolites of an Indian aromatic plant Cymbopogon citratus (D.C.) Staph under natural field conditions. — Int. J. Environ. Stud. 67: 655–675, 2010.Google Scholar
  48. Kummerová, M., Krulová, J., Zezulka, Š., Tříska, J.: Evaluation of fluoranthene phytotoxicity in pea plants by Hill reaction and chlorophyll fluorescence. — Chemosphere 65: 489–496, 2006.PubMedGoogle Scholar
  49. Lan, S.B., Wu, L., Zhang, D.L., Hu, C.X., Liu, Y.D.: Ethanol outperforms multiple solvents in the extraction of chlorophylla from Biological soil crusts. — Soil Biol. Biochem. 43: 857–861, 2011.Google Scholar
  50. Lee, J.J., Correia, M.: Endosymbiotic diatoms from previously unsample habitats. — Symbiosis 38: 251–260, 2005.Google Scholar
  51. Li, X.-R., Wang, X.-P., Li, T., Zhang, J.-G.: Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. — Biol. Fertil. Soils 35: 147–154, 2002.Google Scholar
  52. Li, X.-R., Zhou, H.-Y., Wang, X.-P. et al.: The effects of sand stabilization and revegetation on cryptogam species diversity and soil fertility in Tengger Desert, Northern China. — Plant Soil 251: 237–245, 2003.Google Scholar
  53. Li, X.R., Chen, Y.W., Su, Y.G., Tan, H.J.: Effects of biological soil crust on desert insect diversity: Evidence from the Tengger Desert of Northern China. — Arid Land Res. Manag. 20: 263–280, 2006a.Google Scholar
  54. Li, X.R., Xiao, H.L., He, M.Z., Zhang, J.G.: Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions. — Ecol. Eng. 28: 149–157, 2006b.Google Scholar
  55. Li, X.R., He, M.Z., Zerbe, S. et al.: Micro-geomorphology determines community structure of biological soil crusts at small scales. — Earth Surf. Processes 35: 932–940, 2010a.Google Scholar
  56. Li, X.R., Tian, F., Jia, R.L. et al.: Do biological soil crusts determine vegetation changes in sandy deserts? Implications for managing artificial vegetation. — Hydrol. Process. 24: 3621–3630, 2010b.Google Scholar
  57. Li, X.R., Jia, R.L., Chen, Y.W. et al.: Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China. — Appl. Soil Ecol. 47: 59–66, 2011.Google Scholar
  58. Liu, L.-X., Xu, S.-M., Woo, K.C.: Solar UV-B radiation on growth, photosynthesis and the xanthophyll cycle in tropical acacias and eucalyptus. — Environ. Exp. Bot. 54: 121–130, 2005.Google Scholar
  59. Liu, M.L., Cao, B., Zhou, S.H., Liu, Y.B.: Responses of the flavonoid pathway to UV-B radiation stress and the correlation with the lipid antioxidant characteristics in the desert plant Caryopteris mongolica. — Acta Ecol. Sin. 32: 150–155, 2012.Google Scholar
  60. Lud, D., Moerdijk, T.C.W., Van de Poll, W.H., Buma, A.G.J., Huiskes, A.H.L.: DNA damage and photosynthesis in Antarctic and Arctic Sanionia uncinata (Hedw.) Loeske under ambient and enhanced levels of UV-B radiation. — Plant Cell Environ. 25: 1579–1589, 2002.Google Scholar
  61. Lud, D., Schlensog, M., Schroeter, B., Huiskes, A.H.L.: The influence of UV-B radiation on light-dependent photosynthetic performance in Sanionia uncinata (Hedw.) Loeske in Antarctica. — Polar Biol. 26: 225–232, 2003.Google Scholar
  62. Mackerness, S.A.H., John, C.F., Jordan, B., Thomas, B.: Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. — FEBS Lett. 489: 237–242, 2001.Google Scholar
  63. Manukyan, A.: Effects of PAR and UV-B radiation on herbal yield, bioactive compounds and their antioxidant capacity of some medicinal plants under controlled environmental conditions. — Photochem. Photobiol. 89: 406–414, 2013.PubMedGoogle Scholar
  64. Marshall, T., Williams, K.M.: Total protein determination in urine: Elimination of a differential response between the Coomassie Blue and Pyrogallol Red protein dye-binding assays. — Clin. Chem. 46: 392–398, 2000.PubMedGoogle Scholar
  65. Martínez-Abaigar, J., Núñez-Olivera, E., Beaucourt, N. et al.: Different physiological responses of two aquatic bryophytes to enhanced ultraviolet-B radiation. — J. Bryol. 25: 17–30, 2003.Google Scholar
  66. McKenzie, R.L., Björn, L.O., Bais, A., Ilyasd, M.: Changes in biologically active ultraviolet radiation reaching the Earth’s surface. — Photochem. Photobiol. Sci. 2: 5–15, 2003.PubMedGoogle Scholar
  67. Medina, C.D., Tracanna, B.C., Hilal, M. et al.: Effect of solar UV-B exclusion on the phytoplankton community in a subtropical mountain reservoir: a mesocosm study. — Lake Reserv. Manage. 15: 237–253, 2010.Google Scholar
  68. Mishra, V., Srivastava, G., Prasad, S.M., Abraham, G.: Growth, photosynthetic pigments and photosynthetic activity during seedling stage of cowpea (Vigna unguiculata) in response to UV-B and dimethoate. — Pestic. Biochem. Physiol. 92: 30–37, 2008.Google Scholar
  69. Newsham, K.K., Hodgson, D.A., Murray, A.W.A. et al.: Response of two Antarctic bryophytes to stratospheric ozone depletion. — Global Change Biol. 8: 972–983, 2002.Google Scholar
  70. Newsham, K.K., Robinson, S.A.: Responses of plants in polar regions to UVB exposure: a meta-analysis. — Global Change Biol. 15: 2574–2589, 2009.Google Scholar
  71. Niemi, R., Martikainen, P.J., Silvola, J. et al.: Responses of two Sphagnum moss species and Eriophorum vaginatum to enhanced UV-B in a summer of low UV intensity. — New Phytol. 156: 509–515, 2002.Google Scholar
  72. Patrick, E.: Researching crusting soils: themes, trends, recent developments and implications for managing soil and water resources in dry areas. — Prog. Phys. Geog. 26: 442–461, 2002.Google Scholar
  73. Peng, Q., Zhou, Q.: Influence of lanthanum on chloroplast ultrastructure of soybean leaves under ultraviolet-B stress. — J. Rare Earth 27: 304–307, 2009.Google Scholar
  74. Pluskota, W.E., Michalczyk, D.J., Górecki, R.J.: Control of phenylalanine ammonia-lyase gene promoters from pea by UV radiation. — Acta Physiol. Plantarum 27: 229–236, 2005.Google Scholar
  75. Pradhan, M.K., Nayak, L., Joshi, P.N. et al.: Developmental phase-dependent photosynthetic responses to ultraviolet-B radiation: damage, defence, and adaptation of primary leaves of wheat seedlings. — Photosynthetica 46: 370–377, 2008.Google Scholar
  76. Ranjbarfordoei, A., Samson, R., Van Damme, P.: Photosynthesis performance in sweet almond [Prunus dulcis (Mill) D. Webb] exposed to supplemental UV-B radiation. — Photosynthetica 49: 107–111, 2011.Google Scholar
  77. Reddy, K.R., Kakani, V.G., Zhao, D., Mohammed, A.R., Gao, W.: Cotton responses to ultraviolet-B radiation: experimentation and algorithm development. — Agr. Forest Meteorol. 120: 249–265, 2003.Google Scholar
  78. Roberts, M.R., Paul, N.D.: Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pest and pathogens. — New Phytol. 170: 677–699, 2006.PubMedGoogle Scholar
  79. Ryan, K.G., McMinn, A., Mitchell, K.A., Trenerry, L.: Mycosporine like amino acids in Antarctic sea ice algae, and their response to UVB radiation. — Z. Naturforsch. C. 57: 471–477, 2002.PubMedGoogle Scholar
  80. Ryan, K.G., Hunt, J.E.: The effects of UVB radiation on temperate southern hemisphere forests. — Environ. Pollut. 137: 415–427, 2005.PubMedGoogle Scholar
  81. Sangtarash, M.H., Qaderi, M.M., Chinnappa, C.C., Reid, D.M.: Differential sensitivity of canola (Brassica napus) seedlings to ultraviolet-B radiation, water stress and abscisic acid. — Environ. Exp. Bot. 66: 212–219, 2009.Google Scholar
  82. Schreiber, U., Bilger, W., Neubauer, C.: Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. — In: Schulze, E.-D., Caldwell, M.M. (ed.): Ecophysiology of Photosynthesis. Pp. 49–70. Springer-Verlag, Berlin 1994.Google Scholar
  83. Shi, S.B., Zhu, W.Y., Li, H.M. et al.: Photosynthesis of Saussurea superba and Gentiana straminea is not reduced after long-term enhancement of UV-B radiation. — Environ. Exp. Bot. 51: 75–83, 2004.Google Scholar
  84. Su, Y.-G., Li, X.-R., Chen, Y.-W. et al.: Effects of biological soil crusts on emergence of desert vascular plants in North China. — Plant Ecol. 191: 11–19, 2007.Google Scholar
  85. Sullivan, J.H., Gitz, D.C., Peek, M.S., McElrone, A.J.: Response of three eastern tree species to supplemental UV-B radiation: leaf chemistry and gas exchange. — Agr. Forest Meteorol. 120: 219–228, 2003.Google Scholar
  86. Surabhi, G.-K., Reddy, K.R., Singh, S.K.: Photosynthesis, fluorescence, shoot biomass and seed weigh responses of three cowpea (Vigna unguiculata (L.) Walp.) cultivars with contrasting sensitivity to UV-B radiation. — Environ. Exp. Bot. 66: 160–171, 2009.Google Scholar
  87. Urban, O., Tůma, I., Holub, P., Marek, M.V.: Photosynthesis and growth response of Calamagrostis arundinacea and C. villosa to enhanced UV-B radiation. — Photosynthetica 44: 215–220, 2006.Google Scholar
  88. Vogt, T.: Phenylpropanoid biosynthesis. — Mol. Plant 3: 2–20, 2010.PubMedGoogle Scholar
  89. Wang, S.W., Xie, B.T., Yin, L.N., Duan, L.S., Li, Z.H., Eneji, A.E., Tsuji, W., Tsunekawa, A.: Increased UV-B radiation affects the viability, reactive oxygen species accumulation and antioxidant enzyme activities in maize (Zea mays L.) pollen. — Photochem. Photobiol. 86: 110–116, 2010.PubMedGoogle Scholar
  90. West, N.E.: Structure and function of microphytic soil crusts in wildland ecosystems of arid and semiarid regions. — Adv. Ecol. Res. 20: 179–223, 1990.Google Scholar
  91. Weichmann, J.: Postharvest physiology and secondary metabolism. — J. Appl. Bot.-Angew. Bot. 74: 126–130, 2000.Google Scholar
  92. Whitford, W.G.: Ecology of Desert Systems. — Academic Press, San Diego 2002.Google Scholar
  93. Wilson, B.C., Jacobs, D.F.: Chlorophyll fluorescence of stem cambial tissue reflects dormancy development in Juglans nigra seedlings. — New Forest. 43: 771–778, 2012.Google Scholar
  94. Xie, Z.M., Wang, Y.X., Liu, Y.D., Liu, Y.M.: Ultraviolet-B exposure induces photo-oxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom. — Eur. J. Soil Biol. 45: 377–382, 2009.Google Scholar
  95. Xu, H., Chen, S.B., Biswas, D.K. et al.: Photosynthetic and yield responses of an old and a modern winter wheat cultivars to short-term ozone exposure. — Photosynthetica 47: 247–254, 2009.Google Scholar
  96. Yao, X., Chu, J., He, X., Ba, C.: Protective role of selenium in wheat seedlings subjected to enhanced UV-B radiation. — Russ. J. Plant Physiol. 58: 283–289, 2011.Google Scholar
  97. Yoshimura, H., Zhu, H., Wu, Y.Y., Ma, R.J.: Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction. — Int. J. Biometeorol. 54: 179–191, 2010.PubMedGoogle Scholar
  98. Yu, J., Tang, X.X., Zhang, P.Y. et al.: Effects of CO2 enrichment on photosynthesis, lipid peroxidation and activities of antioxidative enzymes of Platymonas subcordiformis subjected to UV-B radiation stress. — Acta Bot. Sin. 46: 682–690, 2004.Google Scholar
  99. Zhang, Y.M., Wang, H.L., Wang, X.Q., Yang, W.K., Zhang, D.Y.: The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northweastern China. — Geoderma 132: 441–449, 2006.Google Scholar
  100. Zhao, C.-M., Wang, G.-X.: Effects of drought stress on the photoprotection in Ammopiptanthus mongolicus leaves. — Acta Bot. Sin. 44: 1309–1313, 2002.Google Scholar
  101. Zhao, D., Reddy, K.R., Kakani, V.G., Read, J.J., Sullivan, J.H.: Growth and physiological responses of cotton (Gossypium hirsutum L.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions. — Plant Cell Environ. 26: 771–782, 2003.Google Scholar
  102. Zheng, X.Q., Jin, J., Chen, H. et al.: Effect of ultraviolet B irradiation on accumulation of catechins in tea (Camellia sinensis (L.) O. Kuntze). — Afr. J. Biotechnol. 7: 3283–3287, 2008.Google Scholar
  103. Zu, Y.G., Pang, H.H., Yu, J.H., Li, D.W., Wei, X.X., Gao, Y.X., Tong, L.: Responses in the morphology, physiology and biochemistry of Taxus chinensis var. mairei grown under supplementary UV-B radiation. — J. Photochem. Photobiol. B 98: 152–158, 2010.PubMedGoogle Scholar
  104. Zu, Y.G., Wei, X.X., Yu, J.H. et al.: Responses in the physiology and biochemistry of Korean pine (Pinus koraiensis) under supplementary UV-B radiation. — Photosynthetica 49: 448–458, 2011.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. Hui
    • 1
    • 2
  • X. R. Li
    • 1
    • 2
  • R. L. Jia
    • 1
    • 2
  • L. C. Liu
    • 1
    • 2
  • R. M. Zhao
    • 3
  • X. Zhao
    • 1
    • 2
  • Y. P. Wei
    • 4
  1. 1.Shapotou Desert Research and Experimental Station, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouP.R. China
  2. 2.Extreme Stress Resistance and Biotechnology Laboratory, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouP.R. China
  3. 3.College of Life Science and TechnologyGansu Agricultural UniversityLanzhouP.R. China
  4. 4.Australian-China Center on Water Resource ResearchThe University of MelbourneParkville, VictoriaAustralia

Personalised recommendations