, Volume 52, Issue 1, pp 22–35 | Cite as

The physiological light response of two tree species across a hydrologic gradient in Brazilian savanna (Cerrado)

  • H. J. Dalmagro
  • F. de A. Lobo
  • G. L. Vourlitis
  • Â. C. Dalmolin
  • M. Z. AntunesJr.
  • C. E. R. Ortíz
  • J. de S. Nogueira
Original Paper


Tropical savanna ecosystems are extremely diverse and important for global carbon storage. In the state of Mato Grosso, tropical savanna (locally known as the Cerrado), turns from well-drained, upland areas into seasonally flooded areas within the Pantanal; however, the Cerrado and the Pantanal share many common tree species, such as Vochysia divergens, a flood-adapted tree native to the Amazon Basin, and Curatella americana, a tree, adapted native to the welldrained the Cerrado. We measured the photosynthetic light response of these species in the the Cerrado and the Pantanal over a 1-year period to determine how these species physiologically adjust to these hydrologically distinct habitats. We hypothesized that neither species would experience a significant decline in maximum, light-saturated photosynthetic rate (P max) in their naturalized habitat. Physiological performance of each species was generally higher in the habitat that they were adapted to; however, our data indicated that both species have broad tolerance for seasonal variations in hydrology, allowing them to tolerate seasonal drought during the dry season in the Cerrado, and seasonal flooding during the wet season in the Pantanal. In V. divergens, flexible water-use efficiency, higher specific leaf area (SLA), and a greater ability to adjust mass-based P max (P max,m) to variations in leaf N and P concentration appeared to be key traits for withstanding prolonged drought in the Cerrado. In C. americana, increases in SLA and higher nutrient-use efficiency appeared to be important in maintaining high rates of P max,m in the seasonally flooded Pantanal. Flexibility in physiology and resource-use efficiency may allow these species to survive and persist in habitats with broadly differing hydrology.

Additional key words

ecophysiology Curatella americana leaf gas exchange neotropical wetlands Pantanal Vochysia divergens 



atmospheric CO2 concentration


intercellular CO2 concentration




area-based maximum, light-saturated stomatal conductance


light compensation point


leaf nitrogen concentration


mass-based leaf nitrogen concentration


nitrogen-use efficiency


leaf phosphorus concentration


mass-based leaf phosphorus concentration


area-based maximum, light-saturated photosynthetic rate


mass-based maximum rate of photosynthesis


net photosynthetic rate


photosynthetic photon flux density




phosphorus use efficiency


dark respiration


mass-based dark respiration


net radiation


specific leaf area




air temperature


atmospheric vapor pressure deficit


water level


intrinsic water-use efficiency




maximum quantum yield


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antunes, M.Z., Jr., Lobo, F. de A., Dalmagro, H.J., Vourlitis, G.L., Ortíz, C.E.R., Dalmolin, Â.C., de Lucena, I.C. and Suli, G.S.: [Microclimate effect on the gas exchange potential of Cambará (Vochysia divergens Pohl) and Lixeira (Curatella americana L.) in the Cerrado.] — R. Bras. Bioci. 9: 77–85, 2011. [In Portuguese]Google Scholar
  2. Arieira, J., da Cunha, C.N.: [Phytosociology of a forest monodominant Vochysia divergens Pohl (Vochysiaceae) floodplain in the northern Pantanal, Mato Grosso, Brazil.] — Acta Bot. Bras. 20: 569–580, 2006. [In Portuguese]CrossRefGoogle Scholar
  3. Armstrong, W., Brandler, R., Jackson, M.B.: Mechanisms of flood tolerenace in plants. — Acta Bot. Neerl. 43: 307–358, 1994.CrossRefGoogle Scholar
  4. Baker, T.R., Affum-Baffoe, K., Burslem, D.F.R.P., Swaine, M.D.: Phenological differences in tree use and the timing of tropical forest inventories: conclusions from patterns of dry season diameter change. — Forest Ecol. Manag. 171: 261–274, 2002.CrossRefGoogle Scholar
  5. Biudes, M.S., Valentini, C.M.A., Campelo Jr, J.H., Nogueira, J.S.: [Estimation of evapotranspiration under savannah conditions for a mixed-grassland using the Bowen ratio and Penman-Monteith methods.] — Ciência e Natura 30: 71–86, 2008. [In Portuguese]Google Scholar
  6. Borchert, R.: Soil and stem water storage determine phenology and distribution of tropical dry forest trees. — Ecology 75: 1437–1449, 1994.CrossRefGoogle Scholar
  7. Braga, J.M., Defelipo, B.: [Spectrophotometric determination of phosphorus in soil and plant extracts.] — Revista Ceres. 21: 73–85, 1974. [In Portuguese]Google Scholar
  8. Bucci, S.J., Scholz, F.G., Goldstein, G., Meinzer, F.C., Franco, A.C., Zhang, Y., Hao, Guang-You: Water relations and hydraulic architecture in Cerrado trees: adjustments to seasonal changes in water availability and evaporative demand. — Braz. J. Plant Physiol. 20: 233–245, 2008.CrossRefGoogle Scholar
  9. da Cunha, C.N., Junk, W.J.: Distribution of woody plants communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. — Int. J. Ecol. Environ. Sci. 27: 63–70, 2001.Google Scholar
  10. da Cunha, N., Junk, W.J. Year-to-year changes in water level drive the invasion of Vochysia divergens in Pantanal grasslands. — Appl. Veg. Sci. 7: 103–110, 2004.Google Scholar
  11. da Cunha, C.N., Junk, W.J., Leitão Filho, H.F.: Woody vegetation in the Pantanal of Mato Grosso, Brazil: a preliminary typology. — Amazoniana 19: 159–184, 2007.Google Scholar
  12. Dalmagro, H.J., Lobo, F.A., Vourlitis, G.L. et al.: Photosynthetic parameters for two invasive tree species of the Brazilian Pantanal in response to seasonal flooding. — Photosynthetica 51: 281–294, 2013.CrossRefGoogle Scholar
  13. Dalmolin, Â.C., Dalmagro, H.J., Lobo, F.A. et al.: Effects of flooding and shading on growth and gas exchange of Vochysia divergens (Vochysiaceae) an invasive species in the Brazilian Pantanal. — Braz. J. Plant Physiol. 24: 75–84, 2012.CrossRefGoogle Scholar
  14. da Silva, P.R., dos Santos, J., Tribuzy, E.S., et al.: Diameter increment and growth patterns for individual tree growing in central Amazon, Brazil. — Forest Ecol. Manag. 166: 295–301, 2002.CrossRefGoogle Scholar
  15. Domingues, T.F., Martinelli, L.A., Ehleringer, J.R.: Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. — Plant Ecol. 193: 101–112, 2007.CrossRefGoogle Scholar
  16. Eiten, G.: The cerrado vegetation of Brazil. — Bot. Rev. 38: 201–341, 1972.CrossRefGoogle Scholar
  17. Fernández, M.D.: Changes in photosynthesis and fluorescence in response to flooding in emerged and submerged leaves of Pouteria orinocoensis. — Photosynthetica 44: 32–38, 2006.CrossRefGoogle Scholar
  18. Field, C., Mooney, H.A.:The photosynthesis-nitrogen relationship in wild plants. — In: Givnish, T.J. (ed.): On the Economy of Plant Form and Function. Pp. 25–55. Cambridge University Press, Cambridge — London — New York — New Rochelle — Melbourne — Sydney 1986.Google Scholar
  19. Franco, A.C., Bustamante, M., Caldas, L.S. et al.: Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit. — Trees 19: 326–335, 2005.CrossRefGoogle Scholar
  20. Furley, P.A., Ratter, J.A.: Soil resources and plant communities of the central Brazilian cerrado and their development. — J. Biogeogr. 15: 97–108, 1988.CrossRefGoogle Scholar
  21. Funk, J.L.: Differences in plasticity between invasive and native plants from a low resource environment. — J. Ecol. 96: 1162–1173, 2008.CrossRefGoogle Scholar
  22. Funk, J.L., Vitousek, P.M.: Resource-use efficiency and plant invasion in low-resource systems. — Nature 446: 1079–1081, 2007.PubMedCrossRefGoogle Scholar
  23. Golterman, H.L., Clymo, R.S., Ohnstad, M.A.M.: Methods for Physical and Chemical Analysis of Fresh Water. — Blackwell Scientific Publ., Oxford — London 1978.Google Scholar
  24. Goodland, R.: [Low nutrient content and aluminum in the Cerrado] — In: Ferri, M.G. (ed.): [III Simposium on Cerrado]. Pp.44–60. EDUSP, São Paulo 1971. [In Portuguese]Google Scholar
  25. Gulías, J., Flexas, J., Mus, M. et al.: Relationship between maximum leaf photosynthesis, nitrogen content and specific leaf area in Balearic endemic and non-endemic Mediterranean species. — Ann. Bot. 92: 215–222, 2003.PubMedCrossRefGoogle Scholar
  26. Haase, R.: Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. — Forest Ecol. Manag. 117: 129–147, 1999.CrossRefGoogle Scholar
  27. Hall, R.L., Calder, I.R., Gunawardena, E.R.N., Rosier, P.T.W.: Dependence of rainfall interception on drop size: 3. Implementation and comparative performance of the stochastic model using data from a tropical site in Sri Lanka. — J. Hydrol. 185: 389–407, 1996.CrossRefGoogle Scholar
  28. Hulbert, L.C. Ecological studies of Bromus tectorum and other annual bromegrasses. — Ecol. Monogr. 25: 181–213, 1955.CrossRefGoogle Scholar
  29. Jackson, M.B., Colmer, T.D.: Response and Adaptation by Plants to Flooding Stress. — Ann. Bot. 96: 501–505, 2005.PubMedCrossRefGoogle Scholar
  30. Junk, W.J., da Cunha, C.N., Wantzen, K.M., Petermann, P., Strussmann, C., Marques, M.I., Adis, J.: Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. — Aquat. Sci. 68: 278–309, 2006.CrossRefGoogle Scholar
  31. Junk, W.J., da Cunha, C.N.: Pantanal: a large South American wetland at a crossroads. — Ecol. Eng. 24: 391–401, 2005.CrossRefGoogle Scholar
  32. Knops, J.M.H., Reinhart, K.: Specific leaf area along a nitrogen fertilization gradient. — Am. Midl. Nat. 144: 265–272, 2000.CrossRefGoogle Scholar
  33. Koerselman, W., Meuleman, A.F.M.: The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. — J. Appl. Ecol. 33: 1441–1450, 1996.CrossRefGoogle Scholar
  34. Leitão, A.C., da Silva, O.A.: [Seasonal variation of macronutrients in an arboreal species of the Cerrado in the Biological Reserve and Experimental Station of Mogi Guaçu, São Paulo state, Brazil.] — Rodriguésia 55: 127–136, 2004. [In Portuguese]Google Scholar
  35. Lewis, J.D., McKane, R.B., Tingey, D.T., Beedlow, P.A.: Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy. — Tree Physiol. 20: 447–456, 2000.PubMedCrossRefGoogle Scholar
  36. Lite, S.J., Stromberg, J.C.: Surface water and ground-water thresholds for maintaining Populus-Salix forests, San Pedro River, Arizona. — Biol. Conserv. 125: 153–167, 2005.CrossRefGoogle Scholar
  37. Long, S.P., Zhu, X.-G., Naidu, S.L., Ort, D.R.: Can improvement in photosynthesis increase crop yields? — Plant Cell Environ. 29: 315–330, 2006.PubMedCrossRefGoogle Scholar
  38. Lorenzi, H.: [Brasilian trees: A manual of identification and cultivation of Brazilian Trees]. São Paulo: Instituto Plantarum de Estudos da Flora, São Paulo, Nova Odessa 2002. [In Portuguese]Google Scholar
  39. Lopes, A.S., Cox, F.R.: A survey of the fertility status of surface soils under “Cerrado” vegetation in Brazil. — Soil Sci. Soc. Am. J. 41: 742–747, 1977.CrossRefGoogle Scholar
  40. Maurenza, D., Marenco, R.A., Piedade, M.T.F.: [Effects of long-term flooding on the growth of Pouteria glomerata (Sapotaceae), a tree from the floodplain of Central Amazonia.] — Acta Amazônica 39: 519–526, 2009. [In Portuguese]CrossRefGoogle Scholar
  41. McDowell, S.C.L.: Photosynthetic characteristics of invasive and noninvasive species of Rubus (Rosaceae). — Am. J. Bot. 89: 1431–1438, 2002.PubMedCrossRefGoogle Scholar
  42. McKevlin, M.R., McKee, W.H., Jr.: Geochemical processes and nutrient uptake by plants in hydric soils. — Environ. Toxicol Chem. 12: 2197–2207, 1993.CrossRefGoogle Scholar
  43. Medina, E., Francisco, M.: Photosynthesis and water relations of savanna tree species differing in leaf phenology. — Tree Physiol. 14: 1367–1381, 1994.PubMedCrossRefGoogle Scholar
  44. Mendes, J.A.: [Spatial distribution, phenology and partitioning of three species of Qualea (Vochysiaceae) in the Biological Reserve of Mogi Guaçu — SP.] — Instituto de Biociências, UNESP, Doc. Thesis. Rio Claro 1996. [In Portuguese]Google Scholar
  45. Mokany, K., Raison, R.J., Prokushkin, A.S.: Critical analysis of root: shoot ratios in terrestrial biomes. — Glob. Change Biol. 12: 84–96, 2006.CrossRefGoogle Scholar
  46. Nepstad, D.C., de Carvalho, C.R., Davidson, E.A. et al.: The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. — Nature 372: 666–669, 1994.CrossRefGoogle Scholar
  47. Parolin, P., Waldhoff, D., Piedade, M.T.F.: Gas Exchange and Photosynthesis. — In: Junk, W., Piedade, M.T.F., Wittmann, F. et al. (ed.).: Amazonian Floodplain Forests. Ecophysiology, Biodiversity and Sustainable Management. Pp.195–214. Springer, Dordrecht 2010.Google Scholar
  48. Penning de Vries, F.W.T.: Cost of maintenance processes in plant cells. — Ann. Bot. 39: 77–92, 1975.Google Scholar
  49. Pierce, L.L., Running, S.W., Walker, J.: Regional-scale relationships of leaf area index to specific leaf area and leaf nitrogen. — Ecol. Appl. 4: 313–321, 1994.CrossRefGoogle Scholar
  50. Pott, A., Pott, V.J.: [Plants of the Pantanal]. — Editora Embrapa, Embrapa — CPAP, Corumbá 1994. [In Portuguese]Google Scholar
  51. Prioul, J.L., Chartier, P.: Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used. — Ann. Bot. 41: 789–800, 1977.Google Scholar
  52. Radambrasil. [Surveys of Natural Resources, Ministry of Energy Mines, Secretary General.] Projeto RADAMBRASIL. Folha SD 21 Cuiabá, Rio de Janeiro 1982. [In Portuguese]Google Scholar
  53. Reich, P.B., Ellsworth, D.S., Walters, M.B. et al.: Generality of leaf trait relationships: A test across six biomes. — Ecology 80: 1955–1969, 1999.CrossRefGoogle Scholar
  54. Rhodenbaugh, E.J., Pallardy, S.G. Water stress, photosynthesis and early growth patterns of cuttings of three Populus clones. — Tree Physiol. 13: 213–226, 1993.PubMedCrossRefGoogle Scholar
  55. Roché, B.F.Jr, Roché, C.T., Chapman, R.C.: Impacts of grassland habitat on yellow starthistle (Centaurea solstitialis L.) invasion. — Northwest Sci. 68: 86–96, 1994.Google Scholar
  56. Sanches, L., Vourlitis, G.L., Alves, M.C. et al.: Seasonal patterns of evapotranspiration for a Vochysia divergens forest in the Brazilian Pantanal. — Wetlands 31: 1215–1225, 2011.CrossRefGoogle Scholar
  57. Santos, A.S., da Cunha, C.N., Tomás, W. et al.: [Invasive plant species in the Pantanal: How to understand the problem and management solutions through participatory.] — Boletim de Pesquisa. Embrapa Pantanal 66: 1–45, 2006. [In Portuguese]Google Scholar
  58. Sharkey, T.D., Bernacchi, C.J., Farquhar, G.D., Singsaas, E.L.: Fitting photosynthetic carbono dioxide response curves for C3 leaves. — Plant Cell Environ. 30: 1035–1040, 2007.PubMedCrossRefGoogle Scholar
  59. Sinclair, T.R., Gilbert, R.A., Perdomo, R.E. et al.: Sugarcane leaf area development under field conditions in Florida, USA. — Field Crop. Res. 88: 171–178, 2004.CrossRefGoogle Scholar
  60. Tschaplinski, T.J., Blake, T.J.: Water relations, photosynthetic capacity, and root/shoot partitioning of photosynthate as determinants of productivity in hybrid poplar. — Can. J. Bot. 67: 1689–1697. 1989.CrossRefGoogle Scholar
  61. von Caemmerer, S., Evans, J.R.: Enhancing C3 photosynthesis. — Plant Physiol. 154: 589–592, 2010.CrossRefGoogle Scholar
  62. Vourlitis, G.L., da Rocha, H.R.: Flux dynamics in the Cerrado and Cerrado-Forest Transition of Brazil. — In: Hill, M.J., Hanan, N.P. (ed.): Ecosystem Function in Global Savannas: Measurement and Modeling at Landscape to Global Scales. Pp. 97–116. CRC, Inc., Boca Raton 2011.Google Scholar
  63. Vourlitis, G.L., Lobo, F.A., Biudes, M.S., Ortíz, C.E.R., Nogueira, J.S.: Spatial variations in soil chemistry and organic matter content across a Vochysia divergens invasion front in the Brazilian Pantanal. — Soil Sci. Soc. Am. J. 75: 1554–1561, 2011.CrossRefGoogle Scholar
  64. Vourlitis, G.L., Lobo, F.A., Lawrence, S., Lucena, I.C., Borges, O.P., Jr., Dalmagro, H.J., Ortiz; C.E.R., Nogueira, J.S.: Variations in stand structure and diversity along a soil fertility gradient in a Brazilian savanna (Cerrado) in southern Mato Grosso. — Soil Sci. Soc. Am. J. 77: 1370–1379, 2013.CrossRefGoogle Scholar
  65. Wong, S.C., Cowan, I.R., Farquhar, G.D.: Stomatal conductance correlates with photosynthetic capacity. — Nature 282: 424–426, 1979.CrossRefGoogle Scholar
  66. Wright, I.J., Reich, P.B., Westoby, M.: Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. — Funct. Ecol. 15: 423–434, 2001.CrossRefGoogle Scholar
  67. Zeilhofer, P., Schessl, M.: Relationship between vegetation and environmental conditions in the northern Pantanal of Mato Grosso, Brazil. — J. Biogeogr. 27: 159–168, 1999.CrossRefGoogle Scholar
  68. Zeilhofer, P.: Soil mapping in the Pantanal of Mato Grosso, Brazil, using multitemporal Landsat TM data. — Wet. Ecol. Manag. 14: 445–461, 2006.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • H. J. Dalmagro
    • 1
  • F. de A. Lobo
    • 1
  • G. L. Vourlitis
    • 2
  • Â. C. Dalmolin
    • 1
  • M. Z. AntunesJr.
    • 3
  • C. E. R. Ortíz
    • 4
  • J. de S. Nogueira
    • 1
  1. 1.Programa de Pós-Graduação em Física AmbientalIF/UFMTCuiabá-MTBrasil
  2. 2.Department of Biological SciencesCalifornia State UniversitySan MarcosUSA
  3. 3.Programa de Pós-Graduação em Agricultura TropicalFAMEV/UFMTCuiabá/MTBrasil
  4. 4.Departamento de Botânica e EcologiaIB/UFMTCuiabá/MTBrasil

Personalised recommendations