, Volume 51, Issue 4, pp 621–629 | Cite as

Salinity response pattern and isolation of catalase gene from halophyte plant Aeluropus littoralis

  • M. Modarresi
  • G. A. Nematzadeh
  • F. Moradian
Original Papers


The role of the antioxidant defense system in salt tolerance of Aeluropus littoralis has not been yet reported; therefore in the present study, the changes of catalase (CAT) activity in this halophyte plant was investigated and CAT gene was isolated. The leaves of treated and control plants were harvested at various times, starting 1 day prior to initiating treatment, then periodically at 72-h intervals for 21 days. The data collected showed that CAT activity increased significantly with time in plants treated with 200, 400, and 600 mM NaCl when compared with the control plants. Maximum enzyme activity was observed between the 6th and 12th day at all NaCl concentrations. CAT gene was isolated and cloned via pTZ57R/T cloning vector in Escherichia coli. CAT gene encoded 494 amino acids and had also high homology of 90, 87, 86, and 86% with CAT genes from Zea mays, Oryza sativa, Triticum aestivum, and Hordeum vulgare, respectively.

Additional key words

bioinformatic analysis catalase activity gene isolation 











ethylenediaminetetraacetic acid


open reading frame


phenyl methanesulfonyl fluoride






reactive oxygen species


relative water content


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aebi, H.: [13] Catalase in vitro. — In: Lester, P. (ed.): Methods in Enzymology Pp. 121–126. Academic Press. Orlando 1984.Google Scholar
  2. Ali, A., Alqurainy, F.H.: Activities of antioxidants in plants under environmental stress. — In: Motohashi, N. (ed.): The Lutein-Prevention and Treatment for Diseases Pp. 187–256. Transworld Research Network, Trivandrum 2006.Google Scholar
  3. Apse, M.P., Blumwald, E.: Engineering salt tolerance in plants. — Curr. Opin. Biotech. 13: 146–150, 2002.CrossRefPubMedGoogle Scholar
  4. Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotech. Adv. 27: 84–93, 2009.CrossRefGoogle Scholar
  5. Barhoumi, Z., Djebali, W., Smaoui, A. et al.: Contribution of NaCl excretion to salt resistance of Aeluropus littoralis (Willd) Parl. — J. Plant Physiol. 164: 842–850, 2007.CrossRefPubMedGoogle Scholar
  6. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.CrossRefPubMedGoogle Scholar
  7. Castelli, S.L., Grunberg, K., Muñoz, N. et al.: Oxidative damage and antioxidant defenses as potential indicators of salt-tolerant Cenchrus ciliaris L. genotypes. — Flora 205: 622–626, 2010.CrossRefGoogle Scholar
  8. Cope, T.A.: [Poaceae. — In: Nasir, E, Ali, SI, (ed.): Flora of Pakistan. University of Karachi, Karachi 1982. [In French.]Google Scholar
  9. de Azevedo Neto, A.D., Prisco, J.T., Enéas-Filho, J. et al.: Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and saltsensitive maize genotypes. — Environ. Exp. Bot. 56: 87–94, 2006.CrossRefGoogle Scholar
  10. Flowers, T.J., Colmer, T.D.: Salinity tolerance in halophytes. — New Phytol. 179: 945–963, 2008.CrossRefPubMedGoogle Scholar
  11. Garratt, L.C., Janagoudar, B.S., Lowe, K.C. et al.: Salinity tolerance and antioxidant status in cotton cultures. — Free Radical Bio. Med. 33: 502–511, 2002.CrossRefGoogle Scholar
  12. Gossett, D.R., Banks, S.W., Millhollon, E.P., Lucas, M.C.: Antioxidant response to NaCl stress in a control and an NaCltolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine, and exogenous glutathione. — Plant Physiol. 112: 803–809, 1996.PubMedPubMedCentralGoogle Scholar
  13. Hoagland, D.R., Arnon, D.I.: The water culture method for growing plants without soil. — Calif. Agr. Exp. Stat. Cir. 347: 1–32, 1950.Google Scholar
  14. Khan, M.A., Gul, B., Weber, D.J.: Effect of salinity on the growth and ion content of Salicornia rubra. — Commun. Soil Sci. Plant 32: 2965–2977, 2001.CrossRefGoogle Scholar
  15. Khosravinejad, F., Heydari, R., Farboodnia, T.: Antioxidant responses of two barley varieties to saline stress. — Pak. J. Bio. Sci. 11: 905–909, 2008.CrossRefGoogle Scholar
  16. Lee, G., Carrow, R.N., Duncan, R.R.: Growth and water relation responses to salinity stress in halophytic seashore paspalum ecotypes. — Sci. Hort. 104: 221–236, 2005.CrossRefGoogle Scholar
  17. Lichtenthaler, H.K., Buschmann, C.: Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. — In: Wrolstad, R. E. (ed.): Current Protocols in Food Analytical Chemistry. John Wiley & Sons, Corvallis 2001.Google Scholar
  18. Lu, C., Qiu, N., Lu, Q. et al.: Does salt stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors? — Plant Sci. 163: 1063–1068, 2002.CrossRefGoogle Scholar
  19. Mittler, R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.CrossRefPubMedGoogle Scholar
  20. Modarresi, M., Nematzadeh, G.A., Moradian, F., Alavi, S.M.: Identification and Cloning of the Cu/Zn Superoxide Dismutase Gene from Halophyte Plant Aeluropus littoralis. — Russ. J. Genet. 48: 130–134, 2012.CrossRefGoogle Scholar
  21. Modarresi, M., Nematzadeh, G.A., Zarein, M.: Glyceraldehyde-3-phosphate Dehydrogenase Gene from Halophyte Aeluropus lagopoides: Identification and Characterization. — J. Crop Imp. 27: 281–290, 2013.CrossRefGoogle Scholar
  22. Mohsenzadeh, S., Malboobi, M.A., Razavi, K., Farrahi-Aschtiani, S.: Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. — Environ. Exp. Bot. 56: 314–322, 2006.CrossRefGoogle Scholar
  23. Noreen, Z., Ashraf, M.: Changes in antioxidant enzymes and some key metabolites in some genetically diverse cultivars of radish (Raphanus sativus L.). — Environ. Exp. Bot. 67: 395–402, 2009.CrossRefGoogle Scholar
  24. Parida, A.K., Das, A.B.: Salt tolerance and salinity effects on plants: a review. — Ecotox. Environ. Saf. 60: 324–349, 2005.CrossRefGoogle Scholar
  25. Pérez-López, U., Robredo, A., Lacuesta, M. et al.: Lipoic acid and redox status in barley plants subjected to salinity and elevated CO2. — Physiol. Plant. 139: 256–268, 2010.PubMedGoogle Scholar
  26. Porra, R.J.: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. — Photosynth. Res. 73: 149–156, 2002.CrossRefPubMedGoogle Scholar
  27. Purev, M., Kim, Y.J., Kim, M.K. et al.: Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses. — Plant Physiol. Biochem. 48: 451–460, 2010.CrossRefPubMedGoogle Scholar
  28. Rao, G.G., Rao, G.R.: Pigment composition and chlorophyllase activity in pigeon pea (Cajanus indicus Spreng) and Gingelley (Sesamum indicum L.) under NaCl salinity. — Ind. J. Exp. Biol. 19: 768–770, 1981.Google Scholar
  29. Reilly, K., Han, Y., Tohme, J., Beeching, J.R.: Isolation and characterisation of a cassava catalase expressed during postharvest physiological deterioration. — Biochim. Biophys. Acta 1518: 317–323, 2001.CrossRefPubMedGoogle Scholar
  30. Rubio, M.C., Bustos-Sanmamed, P., Clemente, M.R., Becana, M.: Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. — New Phytol. 181: 851–859, 2009.CrossRefPubMedGoogle Scholar
  31. Sairam, R.K., Srivastava, G.C.: Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. — Plant Sci. 162: 897–904, 2002.CrossRefGoogle Scholar
  32. Seckin, B., Turkan, I., Sekmen, A.H., Ozfidan, C.: The role of antioxidant defense systems at differential salt tolerance of Hordeum marinum Huds. (sea barleygrass) and Hordeum vulgare L. (cultivated barley). — Environ. Exp. Bot. 69: 76–85, 2010.CrossRefGoogle Scholar
  33. Shabala, S.N., Shabala, S.I., Martynenko, A.I. et al.: Salinity effect on bioelectric activity, growth, Na+ accumulation and chlorophyll fluorescence of maize leaves: a comparative survey and prospects for screening. — Func. Plant Biol. 25: 609–616, 1998.Google Scholar
  34. Silveira, J.A.G., Araújo, S.A.M., Lima, J.P.M.S., Viégas, R.A.: Roots and leaves display contrasting osmotic adjustment mechanisms in response to NaCl-salinity in Atriplex nummularia. — Environ. Exp. Bot. 66: 1–8, 2009.CrossRefGoogle Scholar
  35. Sobhanian, H., Motamed, N., Jazii, F., Razavi, K., Niknam, V., Komatsu, S.: Salt stress responses of a halophytic grass Aeluropus lagopoides and subsequent recovery. — Russ. J. Plant Physiol. 57: 784–791, 2010.CrossRefGoogle Scholar
  36. Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., Thomas, G.: Scavenging of reactive oxygen species in NaCl-stressed rice (Oryza sativa L.) — differential response in salt-tolerant and sensitive varieties. — Plant Sci. 165: 1411–1418, 2003.CrossRefGoogle Scholar
  37. Yang, F., Xiao, X., Zhang, S., Korpelainen, H., Li, C.: Salt stress responses in Populus cathayana Rehder. — Plant Sci. 176: 669–677, 2009.CrossRefGoogle Scholar
  38. Zhang, J., Kirkham, M.B.: Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. — Plant Cell Physiol. 35: 785–791, 1994.Google Scholar
  39. Zouari, N., Saad, R.B., Legavre, T. et al.: Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis. — Gene 404: 61–69, 2007.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Plant Breeding, Faculty of AgricultureTarbiat Modares UniversityTehranI. R. Iran
  2. 2.Genetic and Agricultural Biotechnology Institute of TabarestanSari Agricultural Sciences and Natural Resources UniversitySariI.R. Iran
  3. 3.Basic Sciences GroupSari Agricultural Sciences and Natural Resources UniversitySariI.R. Iran

Personalised recommendations