Advertisement

Photosynthetica

, Volume 51, Issue 4, pp 565–573 | Cite as

Effect of chromate on photosynthesis in Cr(VI)-resistant Chlorella

  • S. N. Yewalkar
  • K. N. Dhumal
  • J. K. SainisEmail author
Original Papers

Abstract

Chromate-resistant Chlorella spp. isolated from effluents of electroplating industry could grow in the presence of 30 μM K2Cr2O7. Since photosynthesis is sensitive to oxidative stress, chromate toxicity to photosynthesis was examined in this algal isolate. Chromate [Cr(VI)] up to 100 μM was found to stimulate photosynthesis, while 90% inhibition was found, when the cells were incubated with 1 mM Cr(VI) for 4 h. Photosystem (PS) II was inhibited by 80% and PSI by 40% after such Cr(VI) treatment. Thermoluminescence studies on cells treated with 1 mM Cr(VI) for 4 h showed that S2QA recombination peak (Q) was shifted to higher temperature, whereas S2/S3QB recombination peak (B) was shifted to lower temperature. These shifts indicated alga stress response in order to overcome an excitation stress resulting from the inhibition of photosynthesis by Cr(VI). The nontreated Chlorella cells kept in the dark showed periodicity of four for the Q peak (4–8°C) and B peak (34–38°C) after exposure to series of single, turnover, saturating flashes. This periodicity was lost in Cr(VI)-treated cells. Higher concentrations of Cr(VI) inhibited mainly the electron flow in the electron transport chain, inactivated oxygen evolving complex, and affected also Calvin cycle enzymes in the Cr(VI)-resistant isolates of Chlorella.

Additional key words

algae chromate-resistant photosynthesis thermoluminescence 

Abbreviations

BBOT

2,5-bis(5′-tert-butyl-2-benzoxazol-2-yl)thiophene

Chl

chlorophyll

DCFH-DA

2′,7′-dichlorodihydrofluorescein diacetate

Cr(VI)

chromate

DCMU

3-(3,4-dichlorophenyl)-1,1-dimethylurea

DCPIP

2,6-dichlorophenolindophenol

DPC

diphenylcarbazide

PSI

photosystem I

PSII

photosystem II

R-5-P

ribose-5-phosphate

ROS

reactive oxygen species

TL

thermoluminescence

Tm

temperature maxima of the thermoluminescence peak

EC50

effective concentration for 50% survival

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, N.A., Dewez, D., Didur, O. Popovic, R.: Inhibition of photosystem II photochemistry by Cr is caused by the alteration of both D1 protein and oxygen evolving complex. — Photosynth. Res. 89: 81–87, 2006.CrossRefPubMedGoogle Scholar
  2. Ali, N.A., Juneau, P., Didur, O., Perreault, F., Popovic, R.: Effect of dichromate on photosystem II activity in xanthophyll-deficient mutants of Chlamydomonas reinhardtii. — Photosynth. Res. 95: 45–53, 2008.CrossRefGoogle Scholar
  3. Briantais, J.M., Ducruet, J.M., Hodges, M. Krause, G.H.: The effects of low temperature acclimation and photoinhibitory treatments on photosystem 2 studied by thermoluminescence and fluorescence decay kinetics. — Photosynth. Res. 31: 1–10, 1992.CrossRefPubMedGoogle Scholar
  4. Cervantes, C., Campos-García, J., Devars, S. et al.: Interactions of chromium with microorganisms and plants. — FEMS Microbiol. Rev. 25: 335–347, 2001.CrossRefPubMedGoogle Scholar
  5. Collard, J.M. and Matagne, R.F.: Isolation and genetic analysis of Chlamydomonas reinhardtii strains resistant to cadmium. — Appl. Environ. Microb. 56: 2051–2055, 1990.Google Scholar
  6. Demeter, S. Vass, I.: Charge accumulation and recombination in Photosystem II studied by thermoluminescence. I. Participation of the primary acceptor Q and secondary acceptor B in the generation of thermoluminescence of chloroplasts. — Biochim Biophys. Acta 764: 24–32, 1984.CrossRefGoogle Scholar
  7. Desai, T.S.: Flash-induced glow peaks from green plant leaves. — Indian J. Exp. Biol. 30: 135–139, 1992.Google Scholar
  8. DeVault, D., Govindjee: Photosynthetic glow peaks and their relationship with the free energy changes. — Photosynth. Res. 24: 175–181, 1990.PubMedGoogle Scholar
  9. Ducruet, J.-M., Serrano, A., Roncel, M., Ortega, J.M.: Peculiar properties of chlorophyll thermoluminescence emission of autotrophically or mixotrophically grown Chlamydomonas reinhardtii. — J. Photochem. Photobiol. B 104: 301–307, 2011.CrossRefPubMedGoogle Scholar
  10. Ducruet, J.-M., Vass, I.: Thermoluminescence: experimental. — Photosynth. Res. 101: 195–204, 2009.CrossRefPubMedGoogle Scholar
  11. El-Seekh, M.M., Mustafa, M.: Inhibition of the photosynthetic electron transport in the unicellular green alga Chlorella kessleri by mercury at multiple sites. — Cytobios 98: 25–37, 1999.Google Scholar
  12. Gorbi, G., Torricelli, E., Pawlik-Skowronska, B. et al.: Differential response to Cr(VI)-induced oxidative stress between Cr-tolerant and wild-type strains of Scenedesmus acutus (Chlorophyceae). — Aquat. Toxicol. 79: 132–139, 2006.CrossRefPubMedGoogle Scholar
  13. He, Y-Y.. Häder, D.-P.: Involvement of reactive oxygen species in the UV-B damage to the cyanobacterium Anabaena sp. — J. Photochem. Photobiol. B. 66: 73–80, 2002.CrossRefPubMedGoogle Scholar
  14. Hind, G.: Thylakoid components and processes. — In: Hall, D.O., Scurlock, J.M.O., Bolhàr-Nordenkampf, R.C. (ed.): Photosynthesis and Production in a Changing Environment. A Field and Laboratory Manual. Pp. 283–298. Chapmann & Hall, London — Glasgow — New York — Tokyo — Melbourne — Madras 1993.Google Scholar
  15. Hörcsik, Z.T., Kovács, L., Láposi, R. et al.: Effect of chromium on photosystem 2 in the unicellular green alga, Chlorella pyrenoidosa. — Photosynthetica 45: 65–69, 2007.CrossRefGoogle Scholar
  16. Hörcsik, Z., Olah, V., Balogh, A. et al.: Effect of Chromium (VI) on growth, element and photosynthetic pigment composition of Chlorella pyrenoidosa. — Acta Biol. Szegediensis 50: 19–23, 2006.Google Scholar
  17. Horváth, G., Arellano, J.B., Droppa, M., Barón, M.: Alterations in Photosystem II electron transport as revealed by thermoluminescence of Cu-poisoned chloroplasts — Photosynth. Res. 57: 175–181, 1998.CrossRefGoogle Scholar
  18. Huner, N.P.A., Ivanov, A.G., Sane, P.V. et al.: Photoprotection of photosystem. II: Reaction center quenching versus antenna quenching. — In: Deming-Adams, B., Adams, W.A., Matoo, A.K. (ed.): Photoprotection, Photoinhibition, Gene Regulation. Advances in Photosynthesis and Respiration. Vol 21: Pp. 155–173. Springer Science, Business Media BV, Dordrecht 2008.Google Scholar
  19. Ivanov, A.G., Sane, P.V., Hurry, V. et al.: Low-temperature modulation of the redox properties of the acceptor side of photosystem II: Photoprotection through reaction centre quenching of excess energy. — Physiol. Plant. 119: 376–383, 2003.CrossRefGoogle Scholar
  20. Ivanov, A.G., Sane, P.V., Krol, M. et al.: Acclimation to temperature and irradiance modulates PSII charge recombination. — FEBS Lett. 580: 2797–2802, 2006.CrossRefPubMedGoogle Scholar
  21. Izawa, S.: Acceptors and donors for chloroplast electron transport. — In: Colowick, S.P., Kaplan, N.O. (ed.): Methods in Enzymology. Vol. 69. Pp.413–434. Academic Press, New York — London — Toronto — Sydney — San Francisco 1980.Google Scholar
  22. Janda, T., Szalai, G. Paldi, E.: Thermoluminescence investigation of low temperature stress in maize. — Photosynthetica 38: 635–639, 2000.CrossRefGoogle Scholar
  23. Kalin, M., Wheeler, W.N., Meinrath, G.: The removal of uranium from mining waste water using algal/microbial biomass. — J. Environ. Radioact. 78: 151–177, 2005.CrossRefPubMedGoogle Scholar
  24. Leyko, W. Bartosz, G.: Membrane effects of ionizing radiation and hyperthermia. — Int. J. Radiat. Biol. 49: 743–770, 1986.Google Scholar
  25. Mallick, N., Mohn, F.H.: Use of chlorophyll fluorescence in metal-stress research: A case study with the green microalga Scenedesmus. — Ecotox. Environ. Safe 55: 64–69, 2003.CrossRefGoogle Scholar
  26. Metwally, A., Tsonev, T., Zeinalov, Y.: Effect of cytokinins on the photosynthetic apparatus in water-stressed and rehydrated bean plants. — Photosynthetica 34: 563–567, 1998.CrossRefGoogle Scholar
  27. Minagawa, J., Narusaka, Y., Inoue, Y., Satoh, K.: Electron transfer between QA and QB in photosystem II is thermodynamically perturbed in phototolerant mutants of Synechocystis sp. PCC 6803. — Biochemistry 38: 770–775, 1999.CrossRefPubMedGoogle Scholar
  28. Perreault, F., Ajt Ali, N., Saison, C. et al.: Dichromate effect on energy dissipation of photosystem II and photosystem I in Chlamydomonas reinhardtii. — J. Photochem. Photobiol. B. 96: 24–29, 2009.CrossRefPubMedGoogle Scholar
  29. Popovic, R., Perreault, F., Dewez, D., et al.: Alteration of O-J-IP chlorophyll induction kinetics by dichromate: An effect on the water-splitting system. — In: Allen, J. F., Gantt, E., Golbeck, J. H. Osmond, B. (ed.): Photosynthesis. Energy from the Sun. Pp.661–665. Springer, Dordrecht 2008.CrossRefGoogle Scholar
  30. Rocchetta, I. and Kupper, H.: Chromium and copper-induced inhibition of photosynthesis in Euglena gracilis analyzed on the single-cell level by fluorescence kinetic microscopy. — New ai]Phytol. 182: 405–420, 2009.CrossRefGoogle Scholar
  31. Sainis, J.K., Dani, D.N., Dey, G.K.: Involvement of thylakoid membranes in supramolecular organisation of Calvin cycle enzymes in Anacystis nidulans. — J. Plant Physiol. 160: 23–32, 2003.CrossRefPubMedGoogle Scholar
  32. Sane, P.V.: Thermoluminescence A technique for probing photosystem II. — In Carpentier, R. (ed): Photosynthesis Reserch Protocols. Methods in Molecular Biology. Pp. 229–248. Humana Press Inc., Totowa 2004.CrossRefGoogle Scholar
  33. Sane, P.V., Ivanov, A.G., Sveshnikov, D. et al.: A transient exchange of the photosystem II reaction center protein D1:1 with D1:2 during low temperature stress of Synechococcus sp. PCC 7942 in the light lowers the redox potential of QB. — J. Biol. Chem. 277: 32739–32745, 2002.CrossRefPubMedGoogle Scholar
  34. Sane, P.V., Ivanov, A.G., Hurry, V. et al.: Changes in the redox potential of primary and secondary electron-accepting quinones in photosystem II confer increased resistance to photoinhibition in low-temperature-acclimated Arabidopsis. — Plant Physiol. 132: 2144–2155, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S.: Chromium toxicity in plants. — Environ. Int. 31: 739–753, 2005.CrossRefPubMedGoogle Scholar
  36. Skotnica, J., Gilbert, M., Weingart, I. Wilhelm, C.: Thermoluminescence as a tool for monitoring ozone-stressed plants. — Environ. Pollut. 123: 15–20, 2003.CrossRefPubMedGoogle Scholar
  37. Skotnica, J., Matoušková, M., Nauš J. et al.: Thermoluminescence and fluorescence study of changes in Photosystem II photochemistry in desiccating barley leaves. — Photosynth. Res. 65: 29–40, 2000.CrossRefPubMedGoogle Scholar
  38. Takami, R., Almeida, J.V., Vardaris, C.V. et al.: The interplay between thiol-compounds against chromium (VI) in the freshwater green alga Monoraphidium convolutum: Toxicology, photosynthesis, and oxidative stress at a glance. — Aquat. Toxicol. 118: 80–87, 2012.CrossRefPubMedGoogle Scholar
  39. Volland, S., Lütz, C., Michalke, B. Lütz-Meindl, U.: Intracellular chromium localization and cell physiological response in the unicellular alga Micrasterias. — Aquat. Toxicol. 109: 59–69, 2012.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Wintermans, J.F.G.M., De Mots, A.: Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. — Biochim. Biophys. Acta 109: 448–453, 1965.CrossRefPubMedGoogle Scholar
  41. Wium-Andersen, S.: The effect of chromium on the photosynthesis and growth of diatoms and green algae. — Physiol. Plant. 32: 308–310, 1974.CrossRefGoogle Scholar
  42. Yewalkar, S.N., Dhumal, K.N., Sainis, J.K.: Chromium(VI)-reducing Chlorella spp. isolated from disposal sites of paperpulp and electroplating industry. — J. Appl. Phycol. 19: 459–465, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BotanyUniversity of PunePuneIndia
  2. 2.Molecular Biology DivisionBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations