, Volume 51, Issue 4, pp 483–489 | Cite as

Effects of exogenous nitric oxide on photosynthesis

  • D. Procházková
  • D. Haisel
  • N. Wilhelmová
  • D. Pavlíková
  • J. Száková


Nitric oxide (NO) is an important signalling molecule with diverse physiological functions in plants. In plant cell, it is synthesised in several metabolic ways either enzymatically or nonenzymatically. Due to its high reactivity, it could be also cytotoxic in dependence on concentration. Such effects could be also mediated by NO-derived compounds. However, the role of NO in photosynthetic apparatus arrangement and in photosynthetic performance is poorly understood as indicated by a number of studies in this field with often conflicting results. This review brings a short survey of the role of exogenous NO in photosynthesis under physiological and stressful conditions, particularly of its effect on parameters of chlorophyll fluorescence.

Additional key words

chlorophyll fluorescence chloroplast nitration nitrotyrosine 





diaminofluorescein diacetate




maximal quantum yield of PSII photochemistry


variable fluorescence






nitric oxide synthase


nonphotochemical chlorophyll fluorescence quenching






energy dependent quenching of chlorophyll fluorescence


nonphotochemical quenching of Fv


photochemical quenching of Fv


reactive nitrogen species


ribulose-1,5-bisphosphate carboxylase/oxygenase




sodium nitroprusside


effective quantum yield of photochemical energy conversion in PSII


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abat, J.K., Mattoo, A.K., Dewal, R.: S-nitrosylated proteins of a medicinal CAM plant Kalanchoe pinnata — ribulose-1,5-bisphosphate carboxylase/oxygenase activity targeted for inhibition. — FEBS J. 275: 2862–2872, 2008.CrossRefPubMedGoogle Scholar
  2. Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygen species and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant. Mol. Biol. 50: 601–639, 1999.CrossRefPubMedGoogle Scholar
  3. Barroso, J.B., Corpas, F.J., Carreras, A. et al.: Localization of nitric-oxide synthase in plant peroxisomes. — J. Biol. Chem. 274: 36729–36733, 1999.CrossRefPubMedGoogle Scholar
  4. Bartesaghi, S., Valez, V., Trujillo, M. et al.: Mechanistic studies of peroxynitrite-mediated tyrosine nitration in membranes using the hydrophobic probe N-t-BOC-L-tyrosine tert-butyl ester. — Biochemistry 45: 6813–6825, 2006.CrossRefPubMedGoogle Scholar
  5. Beligni, M.V., Lamattina, L.: Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyls elongation, three light inducible responses in plants. — Planta 210: 215–221, 2000.CrossRefPubMedGoogle Scholar
  6. Bethke, P.C., Badger, M.R., Jones, R.L.: Apoplastic synthesis of nitric oxide by plant tissues. — Plant Cell 16: 332–341, 2004.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Booij-James, I.S., Edelman, M., Mattoo, A.K.: Nitric oxide donor-mediated inhibition of phosphorylation shows that light-mediated degradation of photosystem II D1 protein and phosphorylation are not tightly linked. — Planta 229: 1347–1352, 2009.CrossRefPubMedGoogle Scholar
  8. Chaki, M., Valderrama, R., Fernández-Ocaña, A.M. et al.: High temperature triggers the metabolism of S-nitrosothiols in sunflower mediating a process of nitrosative stress which provokes the inhibition of ferredoxin-NADP reductase by tyrosine nitration. — Plant Cell Environ. 34: 1803–1818, 2011.CrossRefPubMedGoogle Scholar
  9. Cooney, R.V., Harwood, P.J., Custer, L.J., Franke, A.A.: Lightmediated conversion of nitrogen dioxide to nitric oxide by carotenoids. — Environ. Health Perspect. 102: 460–462, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Corpas, F.J., del Río, L.A., Barroso, J.B.: Post-translational modification mediated by reactive nitrogen species. — Plant Signals Behav. 5: 301–303, 2008.CrossRefGoogle Scholar
  11. Corpas, F.J., Chaki, M., Leterrier, M., Barroso, J.B.: Protein tyrosine nitration. A new challenge in plants. — Plant Signals Behav. 10: 920–923, 2009.CrossRefGoogle Scholar
  12. Culotta, E., Koshland, D.E., Jr.: NO news is good news. — Science 258: 1862–1865, 1992.CrossRefPubMedGoogle Scholar
  13. Ding, F., Wang, X.F., Shi, Q.H. et al.: Exogenous nitric oxide alleviated the inhibition of photosynthesis and antioxidant enzyme activities in iron-deficient Chinese cabbage (Brassica chinensis L.). — Agr. Sci. China 7: 168–179, 2008.CrossRefGoogle Scholar
  14. Ederli, L., Reale, L., Madeo, L. et al.: NO release by nitric oxide donors in vitro and in planta. — Plant Physiol. Biochem. 47: 42–48, 2009.CrossRefPubMedGoogle Scholar
  15. Fan, H.F., Duc, X., Zhu, Z.J.: Effects of exogenous nitric oxide on plant growth, membrane lipid peroxidation and photosynthesis in cucumber seedling leaves under low temperature. — Hort. Sci. 23: 538–542, 2011.Google Scholar
  16. Fedoroff, N.: Redox regulatory mechanisms in cellular stress responses. — Ann. Bot. 98: 289–300, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ferreira, F.J., Guo, C., Coleman J.R.: Reduction of plastidlocalized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. — Plant Physiol. 147: 585–594, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Foissner, I., Wendehenne, D., Langebartels, C., Durner, J.: In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. — Plant J. 23: 817–824, 2000.CrossRefPubMedGoogle Scholar
  19. Galetskiy, D, Lohscheider, J.N., Kononikhin, A.S., et al.: Mass spectrometric characterization of photooxidative protein modifications in Arabidopsis thaliana thylakoid membranes. — Rapid Commun. Mass Sp. 25: 184–190, 2011a.CrossRefGoogle Scholar
  20. Galetskiy, D., Lohscheider, J.N., Kononikhin, A.S., Popov, I.A., Nikolaev, E.N., Adamska, I.: Phosphorylation and nitration levels of photosynthetic proteins are conversely regulated by light stress. — Plant Mol. Biol. 77: 461–473, 2011b.CrossRefPubMedGoogle Scholar
  21. Gao, Z., Lin, Y., Wang, X. et al.: Sodium nitroprusside (SNP) alleviates the oxidative stress induced by NaHCO3 and protects chloroplast from damage in cucumber. — Afr. J. Biotechnol. 11: 6974–6982, 2012.Google Scholar
  22. García-Mata, C., Lamattina, L.: Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. — Plant Physiol. 126: 1196–1204, 2001.CrossRefPubMedGoogle Scholar
  23. Gas, E., Flores-Pérez, Ú., Sauret-Güeto, S., Rodríguez-Concepción, M.: Hunting for plant nitric oxide synthase provides new evidence of a central role for plastids in nitric oxide metabolism. — Plant Cell 21: 18–23, 2009.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gill, S.S., Hasanuzzaman, M., Nahar, K., Macovei, A., Tuteja, N.: Importance of nitric oxide in cadmium stress tolerance in crop plants. — Plant Physiol. Biochem. 63: 254–261, 2013.CrossRefPubMedGoogle Scholar
  25. González-Pérez, S., Quijano, C., Romero, N. et al.: Peroxynitrite inhibits electron transport on the acceptor side of higher plant photosystem II. — Arch. Biochem. Biophys. 473:25–33, 2008.CrossRefPubMedGoogle Scholar
  26. Gould, K.S., Lamotte, O., Klinguer, A. et al.: Nitric oxide production in tobacco leaf cells: a generalized stress response? — Plant Cell Environ. 26: 1851–1862, 2003.CrossRefGoogle Scholar
  27. Graziano, M., Beligni, M.V., Lamattina, L.: Nitric oxide improves internal iron availability in plants. — Plant Physiol. 130: 1852–1859, 2002.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Griebel, T., Zeier, J.: Light regulation and daytime dependency of inducible plant defenses in Arabidopsis: phytochrome signalling controls systemic acquired resistance rather than local defense. — Plant Physiol. 147: 790–801, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hayat, S., Yadav, S., Ali, B., Ahmad, A.: Interactive effect of nitric oxide and brassinosteroids on photosynthesis and the antioxidant system of Lycopersicon esculentum. — Russ. J. Plant Physiol. 57: 212–221, 2010.CrossRefGoogle Scholar
  30. He, Y., Tang, R.H., Hao, Y. et al.: Nitric oxide represses the Arabidopsis floral transition. — Science 24: 1968–1971, 2004.CrossRefGoogle Scholar
  31. Heckathorn, S.A., Mueller, K., LaGuidice, S. et al.: Chloroplast small heat-shock proteins protect photosynthesis during heavy metal stress. — Amer. J. Bot. 91: 1312–1318, 2004.CrossRefGoogle Scholar
  32. Hill, A.C., Bennett, J.H.: Inhibition of apparent photosynthesis by nitrogen oxides. — Atmos. Environ. 4, 341–348, 1970.CrossRefGoogle Scholar
  33. Hirotsu, N., Makino, A., Ushio, A., Mae, T.: Changes in the thermal dissipation and the electron flow in the water-water cycle in rice grown under conditions of physiologically low temperature. — Plant Cell Physiol. 45: 635–644, 2004.CrossRefPubMedGoogle Scholar
  34. Hogg, N.: Biological chemistry and clinical potential of Snitrosothiols. — Free Radic. Biol. Med. 28: 1478–1486, 2000.CrossRefPubMedGoogle Scholar
  35. Hsu, Y.T., C.H. Kao, C.H.: Cadmium toxicity is reduced by nitric oxide in rice leaves. — Plant Growth Regul. 42: 227–238, 2004.CrossRefGoogle Scholar
  36. Hu, X., Neill S.J., Tang, Z., Cai, W.: Nitric oxide mediates gravitropic bending in soybean roots. — Plant Physiol. 137: 663–670, 2005.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jasid, S., Simontacchi, M., Bartoli, C.S., Puntarulo, S.: Chloroplasts as a nitric oxide cellular source. Effect of reactive nitrogen species on chloroplastic lipids and proteins. — Plant. Physiol. 142: 1246–1255, 2006.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jhanji, S., Setia, R.C., Kaur, N. et al.: Role of nitric oxide in cadmium-induced stress on growth, photosynthetic components and yield of Brassica napus L. — J. Environ. Biol. 33: 1027–1032, 2012.PubMedGoogle Scholar
  39. Kangasjärvi, S., Neukermans, J., Li, S. et al.: Photosynthesis, photorespiration, and light signalling in defence responses. — J. Exp. Bot. 63: 1619–1636, 2012.CrossRefPubMedGoogle Scholar
  40. Kazemi, N., Khavar-Nejad, R.A., Fahimi, H. et al.: Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of Brassica napus L. under nickel stress. — Sci. Hortic-Amsterdam 126: 402–407, 2010.CrossRefGoogle Scholar
  41. Knowles, R.G., Moncada, S.: Nitric oxide synthases in mammals. — Biochem. J. 298: 249–258, 1994.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kumar, H., Sharma, D., Kumar, V.: Nickel induced oxidative stress and role of antioxidant defence in barley roots and leaves. — Int. J. Environ. Biol. 2: 121–128, 2012.Google Scholar
  43. Lamattina, L., García-Mata, C., Graziano, M., Pagnussat, G.: Nitric oxide: The versatility of an extensive signal molecule. — Annu. Rev. Plant Biol. 54: 109–136, 2003.CrossRefPubMedGoogle Scholar
  44. Lancaster, J.R.,Jr: Diffusion of free nitric oxide. — Meth. Enzymol. 268: 31–50, 1996.CrossRefPubMedGoogle Scholar
  45. Laspina, N.V., Groppa, M.D., Tomaro, M.L., Benavides, M.P.: Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. — Plant Sci. 169: 323–330, 2005.CrossRefGoogle Scholar
  46. Liu, J., Wang, J., Wang, X., Wang, X., Wang, R.: Regulation of exogenous nitric oxide on photosynthetic physiological response of Lolium perenne seedlings under NaHCO3 stress. — Acta Ecol. Sinica 32: 3460–3466, 2012.CrossRefGoogle Scholar
  47. Lum, H.-K., Lee, C.-H., Butt, Y.K.-C., Lo, S.C.-L.: Sodium nitroprusside affects the level of photosynthetic enzymes and glucose metabolism in Phaseolus aureus (mung bean). — Nitric Oxide-Biol. Ch. 12: 220–230, 2005.CrossRefGoogle Scholar
  48. Murgia, I., de Pinto, M.C., Delledonne, M., Soave, C., de Gara, L.: Comparative effects of various nitric oxide donors on ferritin regulation, programmed cell death, and redox state in plant cells. — J. Plant Physiol. 161: 777–783, 2004.CrossRefPubMedGoogle Scholar
  49. Ördög, A., Wodala, B., Rózsavölgyi, T., et al.: Regulation of guard cell photosynthetic electron transport by nitric oxide. — J. Exp. Bot. 64: 1357–1366, 2013.CrossRefPubMedGoogle Scholar
  50. Planchet, E., Gupta, J.K., Sonoda, M., Kaiser, W.M.: Nitric oxide emission from tobacco leaves and cell suspensions: Rate limiting factors and evidence for the involvement of mitochondrial electron transport. — Plant J. 41: 732–743, 2005.CrossRefPubMedGoogle Scholar
  51. Procházková, D., Wilhelmová, N.: Nitric oxide, reactive nitrogen species and associated enzymes during plant senescence. — Nitric Oxide-Biol. Ch. 24: 61–65, 2011.CrossRefGoogle Scholar
  52. Puntarulo, S., Jasid, S., Simontacchi, M.: Reactive nitrogen species-dependent effects on soybean chloroplasts. — Plant Signals Behav. 2: 96–98, 2007.CrossRefGoogle Scholar
  53. Radi, R.: Peroxynitrite reactions and diffusion in biology. — Chem. Res. Toxicol. 11: 720–721, 1998.CrossRefPubMedGoogle Scholar
  54. Ramamurthi, A., Lewis, R.S.: Measurements and modelling of nitric oxide release rates for nitric oxide donors. — Chem. Res. Toxicol. 10: 408–413, 1997.CrossRefPubMedGoogle Scholar
  55. Roberts, M.R., Paul, N.D.: Seduced by the dark side: integrating molecular and ecological perspectives on the influence of light on plant defence against pests and pathogens. — New Phytol. 170: 677–699, 2006.CrossRefPubMedGoogle Scholar
  56. Rodrigo, J., Springall, D.R., Uttenthal, O., Bentura, M.L., Abadia-Molina, F., Riveros Moreno, V., Martinez-Murillo, R., Polak, J.M., Moncada, S.: Locations of nitric oxide synthase in the adult rat brain. — Philos. T. Roy Soc. B 345: 175–221, 1994.CrossRefGoogle Scholar
  57. Sanakis, Y., Goussias, C., Mason, R.P., Petrouleas, V.: NO interacts with the tyrosine radical YD · of photosystem II to form an iminoxyl radical. — Biochemistry 36: 1411–1417, 1997.CrossRefPubMedGoogle Scholar
  58. Saxe, H.: Stomatal-dependent and stomatal-independent uptake of NOx. — New Phytol. 103: 199–205, 1986.CrossRefGoogle Scholar
  59. Shi, S.Y., Wang, G., Wang, Y.D. et al.: Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. — Nitric Oxide-Biol. Ch. 13: 1–9, 2005.CrossRefGoogle Scholar
  60. Snyder, S.H.: Nitric oxide: first in a new class of neurotransmitters. — Science 257: 494–496, 1992.CrossRefPubMedGoogle Scholar
  61. Stöhr, C., Strube, F., Marx, G. et al.: A plasma membranebound enzyme of tobacco roots catalyses the formation of nitric oxide from nitrite. — Planta 212: 835–841, 2001.CrossRefPubMedGoogle Scholar
  62. Takahashi, S., Yamasaki, H.: Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide. — FEBS Lett. 512: 145–148, 2002.CrossRefPubMedGoogle Scholar
  63. Tan, J.H., Zhao, J., Hong, Y. et al.: Effects of exogenous nitric oxide on photosynthesis, antioxidant capacity and praline accumulation in wheat seedlings subjected to osmotic stress. — World J. Agr. Sci. 4: 307–313, 2008.Google Scholar
  64. Tanno, M., Sueyoshi, S., Miyata, N., Nakagawa S.: Nitric oxide generation from aromatic N-nitrosoureas at ambient temperature. — Chem. Pharm. Bull. 44: 18491852, 1996.CrossRefGoogle Scholar
  65. Tewari, R.K., Kumar, P., Kim, S. et al.: Nitric oxide retards xanthine oxidase-mediated superoxide anion generation in Phalaenopsis flower: an implication of NO in the senescence and oxidative stress regulation. — Plant Cell Reports 28: 267–279, 2009.CrossRefPubMedGoogle Scholar
  66. Tewari, R.K., Prommer, J., Watanabe, M.: Endogenous nitric oxide generation in protoplast chloroplasts. — Plant Cell. Rep. 32: 31–44, 2013.CrossRefPubMedGoogle Scholar
  67. Uchida, A., Jagendorf, A.T., Hibino, T. et al.: Effects of hydrogen peroxide and nitric oxide on both salt and heat tolerance in rice. — Plant Sci. 163: 515–523, 2002.CrossRefGoogle Scholar
  68. Vladkova, R., Dobrikova, A.G., Singh, R. et al.: Photoelectron transport ability of chloroplast thylakoid membranes treated with NO donor SNP: changes in flash oxygen evolution and chlorophyll fluorescence. — Nitric Oxide-Biol. Ch. 24: 84–90, 2011.CrossRefGoogle Scholar
  69. Wang, M., Li, Q., Fu, S., Dong, B.: [Effects of exogenous nitric oxide on photosynthetic characteristics of poplar leaves under water stress.] — Ying Yong Sheng Tai Xue Bao: 16: 218–222, 2005. [In Chinese]PubMedGoogle Scholar
  70. Wendehenne, D., Pugin A., Klessig D.F., Durner, J.: Nitric oxide: comparative synthesis and signalling in animal and plant cells. — Trends Plant Sci. 4: 177–183, 2001.CrossRefGoogle Scholar
  71. Wilhelmová, N., Fuksová, H., Srbová, M. et al.: The effect of plant cytokinin hormones on the production of ethylene, nitric oxide, and protein nitrotyrosine in ageing tobacco leaves. — BioFactors 27: 203–211, 2006.CrossRefPubMedGoogle Scholar
  72. Wilson, I.D., Neill, S.J., Hancock, J.T.: Nitric oxide synthesis and signalling in plants. — Plant Cell Environ. 31: 622–631, 2008.CrossRefPubMedGoogle Scholar
  73. Wodala, B., Deák, Z., Vass, I. et al.: In vivo target sites of nitric oxide in photosynthetic electron transport as studied by chlorophyll fluorescence in pea leaves. — Plant Physiol. 146: 1920–1927, 2008.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Wodala, B., Deák, Z., Vass, I. et al.: Nitric oxide modifies photosynthetic electron transport in pea leaves. — Acta Biol. Szeged. 49: 7–8, 2005.Google Scholar
  75. Wu, X.X., Ding, H.D., Chen, J.L. et al.: Attenuation of saltinduced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. — Afr. J. Biotech. 9: 7837–7846, 2010.Google Scholar
  76. Xiong, J., An, L., Lu, H., Zhu, C.: Exogenous nitric oxide enhances cadmium tolerance of rice by increasing pectin and hemicellulose contents in root cell wall. — Planta 230: 755–765, 2009.CrossRefPubMedGoogle Scholar
  77. Xiong, J., Fu, G., Tao, L., Zhu, C.: Roles of nitric oxide in alleviating heavy metal toxicity in plants. — Arch. Biochem. Biophys. 497: 13–20, 2010.CrossRefPubMedGoogle Scholar
  78. Yamasaki, H.: Nitrite dependent nitric oxide production pathway: implication for involvement of active nitrogen species in photoinhibition in vivo. — Philos. T. Roy Soc. B 355: 1477–1488, 2000.CrossRefGoogle Scholar
  79. Yang, J.D., Zhao, H.L., Zhang, T.H., Yun, J.F.: Effects of exogenous nitric oxide on photochemical activity of photosystem II in potato leaf tissue under non-stress condition. — Acta Bot. Sin. 46: 1009–1014, 2004.Google Scholar
  80. Yang, W., Sun, Y., Chen, S. et al.: The effect of exogenously applied nitric oxide on photosynthesis and antioxidant activity in heat stressed chrysanthemum. — Biol. Plant. 55: 737–740, 2011.CrossRefGoogle Scholar
  81. Zhang, Z., Davies, L.R., Martin, S.M. et al.: The nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP) increases free radical generation and degrades left ventricular function after myocardial ischemic-reperfusion. — Resuscitation 59: 345–352, 2003.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Zottini, M., Formentin, E., Scattolin M. et al.: Nitric oxide affects plant mitochondrial functionality in vivo. — FEBS Lett. 515: 75–78, 2002.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • D. Procházková
    • 1
  • D. Haisel
    • 1
  • N. Wilhelmová
    • 1
  • D. Pavlíková
    • 2
  • J. Száková
    • 2
  1. 1.Institute of Experimental BotanyAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life Sciences PraguePrague 6Czech Republic

Personalised recommendations