, Volume 52, Issue 1, pp 16–21 | Cite as

Leaf gas exchange in species of the Theobroma genus

  • A. -A. F. Almeida
  • F. P. Gomes
  • R. P. Araujo
  • R. C. Santos
  • R. R. Valle
Original Paper


Species of the Theobroma genus are primarily known by their commercially valuable seeds, especially, T. cacao is one of the most important tropical perennial crops. Beside T. grandiflorum, T. bicolor, and T. angustifolium, T. cacao is the only species of the genus that has been better studied to obtain physiologically relevant information. The main objective of this work was to evaluate the leaf gas exchange in seedlings of seven species of the Theobroma genus, seeking to identify characteristics that could be used in T. cacao breeding programmes. The study was realized under greenhouse conditions using six-month-old seedlings, in which net photosynthetic rate (P N), stomatal conductance (g s), transpiration (E), as well as parameters derived from light curves (P N vs. photosynthetically active radiation) were evaluated. T. cacao, along with T. microcarpum, showed the lowest values of P N, g s, and E, while the highest values were presented by T. speciosum, which showed higher saturation irradiance and lower intrinsic and instantaneous water-use efficiencies, being considered the species less conservative in water use. Therefore, the parameters shown by the different evaluated species could serve to design T. cacao genotypes, through introgression of genes for specific environments such as the cabruca system widespread in southern Bahia, Brazil.

Additional key words

light-response curves photosynthesis stomatal conductance transpiration water-use efficiency 





stomatal conductance to water vapor


stomatal conductance to water vapor normalized for leaf-to-air vapor pressure deficit


compensation irradiance


saturation irradiance


photosynthetically active radiation


maximum rate of gross photosynthetic rate at saturation irradiance


net photosynthetic rate per leaf area unit


dark respiration rate


leaf-to-air vapor pressure deficit


instantaneous water-use efficiency

WUEi (= PN/gs)

intrinsic water-use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, W.W. III, Demmig-Adams, B., Logan, B.A., et al.: Rapid changes in xantophyll cycle-dependent energy dissipation and photosystem II efficiency in two vines, Stephania japonica and Smilax australis, growing in the understory of an open Eucalyptus forest. — Plant Cell Environ. 22: 125–136, 1999.CrossRefGoogle Scholar
  2. Addison, G.O., Tavares, R.M.: [Observations on the Theobroma genus species which occur in the Amazon.] — Boletim Técnico do Instituto Agronômico do Norte. Vol. 25. 1951. [In Portuguese]Google Scholar
  3. Almeida, A.-A.F., Valle, R.R.: Ecophysiology of the cacao tree. — Braz. J. Plant Physiol. 19: 425–448, 2007.CrossRefGoogle Scholar
  4. Almeida, A.-A.F., Valle, R.R.: Cacao: ecophysiology of growth and production. — In: DaMatta, F.M. (ed.): Ecophysiology of Tropical Tree Crops. Pp. 37–70. Nova Science Publishers Inc., Hauppauge 2009.Google Scholar
  5. Baker, R.E.D., Cope, F.W., Holliday, P.C., et al.: The Anglo-Colombian cacao collecting expedition. — Report on Cacao Research: I.C.T.A., Trinidad 1953. 8–18, 1954.Google Scholar
  6. Baligar, V.C., Bunce, J.A., Machado, R.C.R., Elson, M.K.: Photosynthetic photon flux density, carbon dioxide concentration and vapor pressure deficit effects on photosynthesis in cacao seedlings. — Photosynthetica 46: 216–221, 2008.CrossRefGoogle Scholar
  7. Bazzaz, F.A.: Plants in changing Environments: Linking physiological, population, and community Ecology. Cambridge University Press, Cambridge — New York — Melbourne — Madrid — Cape Town — Singapore — SãoPaolo — Delhi 1998.Google Scholar
  8. Bobich, E., Barron-Gafford, G., Rascher, K., Murthy, R.: Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. — Tree Physiol. 30: 866–875, 2010.PubMedCrossRefGoogle Scholar
  9. Calzavara, B.B.G., Muller, C.H., Kahwage, O.N.C.: [Tropical Fruit Crops: Cupuaçuzeiro. Cultivation, Processing and Use of Fruit. ] — EMBRAPA/CPATU, Belém 1984. [In Portuguese]Google Scholar
  10. Cao, K.F.: Leaf anatomy and chlorophyll content of 12 woody species in contrasting light conditions in a Bornean heath forest. — Can. J. Bot. 78: 1245–1253, 2000.Google Scholar
  11. Charters, Y.M., Wilkinson, M.J.: The use of self-pollinated progenies as ‘in-groups’ for the genetic characterization of cocoa germplasm. — Theor. Appl. Genet. 100: 160–166, 2000.CrossRefGoogle Scholar
  12. Chazdon, R.L, Pearcy, R.W., Lee, D.W., Fetcher, N.: Photosynthetic responses of tropical forest plants to contrasting light environments. — In: Mulkey, S.S., Chazdon, R.L., Smith, A.P. (ed.): Tropical Forest Plant Ecophysiology. Pp. 5–55. Chapman & Hall, New York 1996.CrossRefGoogle Scholar
  13. Costa, L.C.D., de Almeida A.-A.F., Valle, R.R.: Gas exchange, nitrate assimilation and dry-matter accumulation of Theobroma cacao seedlings submitted to different irradiances and nitrogen levels. — J. Hort. Sci. Biotechnol. 76: 224–230, 2001.Google Scholar
  14. Cuatrecasas, J.: Cacao and its allies; a taxonomic revision of the genus Theobroma. — Contr. U.S. Natl. Herb. 35: 379–614, 1964.Google Scholar
  15. Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A.: 1989. Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. — Plant Physiol. 90: 1233–1238, 1989.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Daymond, A.J., Tricker, P. J., Hadley, P.: Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen. — Biol. Plant. 55: 99–104, 2011.CrossRefGoogle Scholar
  17. Ducke, A.: [The Brazilian species of the Theobroma genus.] — Boletim do Instituto Agronômico do Norte 28: 1–89, 1953. [In Portuguese]Google Scholar
  18. Escalona, J.M., Flexas, J., Medrano, H.: Stomatal and nonstomatal limitations of photosynthesis under water stress in field-grown grapevines. — Aust. J. Plant Physiol. 26: 421–433, 1999.CrossRefGoogle Scholar
  19. Faleiro, F.G., Yamada, M.M., Lopes, U.V. et al.: Genetic similarity of Theobroma cacao L. accessions maintained in duplicates in the Cacao Research Center germplasm collection, based on RAPD markers. — Crop Breed. Appl. Biot. 2: 439–444, 2002.CrossRefGoogle Scholar
  20. Faleiro, F.G., Pires, J.L., Lopes, U.V.: [Use of RAPD molecular markers and microsatellite in order to confirm the cross-fertilization between Theobroma cacao and Theobroma grandiflorum.] — Agrotrópica 15: 41–46, 2003. [In Portuguese]Google Scholar
  21. Farquhar, G.D.: Feedforward responses of stomata to humidity. — Aust. J. Plant Physiol. 5: 787–800, 1978.CrossRefGoogle Scholar
  22. Feng, Y.L., Cao, K.F., Zhang, J.L.: Photosynthetic characteristics, dark respiration, and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances. — Photosynthetica 42: 431–437, 2004.CrossRefGoogle Scholar
  23. Franck, N., Vaast, P.: Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. — Trees 23: 761–769, 2009.CrossRefGoogle Scholar
  24. Gao, Q., Zhao, P., Zeng, X., Cai, X. and Shen, W.: A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. — Plant Cell Environ. 25: 1373–1381, 2002.CrossRefGoogle Scholar
  25. Givnish, T.J.: Adaptations to sun and shade: a whole plant perspective. — Aust. J. Plant Physiol. 15: 63–92, 1988.CrossRefGoogle Scholar
  26. Gonçalves, J.F.C., Barretto, D.C.S., Santos Junior, U.M., Fernandes, A.V., Sampaio, P.T.B., Buckeridge, M.S.: Growth, photosynthesis and stress indicators in young rosewood plants (Aniba rosaeodora Duke) under different light intensities. — Braz. J. Plant Physiol. 17: 325–334, 2005.Google Scholar
  27. Guo, X.R., Cao, K.F., Xu, Z.F.: Acclimation to irradiance in seedlings of three tropical rain forest Garcinia species after simulated gap formation. — Photosynthetica 44: 193–201, 2006.CrossRefGoogle Scholar
  28. Iqbal, R.M., Rao, A.R., Rasul, E., Wahid, A.: Mathematical models and response functions in photosynthesis: an exponential model. — In: Pessarakli, M. (ed.): Handbook of Photosynthesis. Pp. 803–810. Marcel Dekker Inc., New York 1997.Google Scholar
  29. Karatassiou, M., Noitsakis, B.: Changes of the photosynthetic behaviour in annual C3 species at late successional stage under environmental drought conditions. — Photosynthetica 48: 377–382, 2010.CrossRefGoogle Scholar
  30. Klich, M.G.: Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. — Environ. Exp. Bot. 44: 171–183, 2000.PubMedCrossRefGoogle Scholar
  31. Lachenaud, P., Bonnot, F.; Oliver, G.: Use of floral descriptors to study variability in wild cocoa trees (Theobroma cacao L.) in French Guiana. — Genet. Resour. Crop Ev. 46: 491–500, 1999.CrossRefGoogle Scholar
  32. Lambers, H.; Chappin, F.S., III; Pons, T.L.: Plant Physiological Ecology. 2nd Ed. — Springer, New York 2008.CrossRefGoogle Scholar
  33. Lerceteau, E., Robert, T., Pétiard, V., Crouzillat, D.: Evaluation of the extent of genetic variability among Theobroma cacao accessions using RAPD and RFLP markers. — Theor. Appl. Genet. 95: 10–19, 1997.CrossRefGoogle Scholar
  34. Martinson, V.A.: Hybridization of cacao and Theobroma grandiflorum. — J. Heredity 57: 134–136, 1966.Google Scholar
  35. Massonnet, C., Costes, E., Rambal, S., et al.: Stomatal regulation of photosynthesis in apple leaves: Evidence for different water-use strategies between two cultivars. — Ann. Bot. 100: 1347–1356, 2007.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Mielke, M.S., de Almeida, A.-A.F., Gomes, F. P.: Photosynthetic traits of five neotropical rainforest tree species: interactions between light response curves and leaf-to-air vapour pressure deficit. — Braz. Arch. Biol. Technol. 48: 815–824, 2005.CrossRefGoogle Scholar
  37. Pearcy, R.W. Acclimation to sun and shade. — In: Raghavendra, A.S. (ed.) Photosynthesis: A Comprehensive Treatise. Pp. 250–263. Cambridge Univ. Press, New York 2000.Google Scholar
  38. Reksodihardjo, W.S.: The species of the genus Theobroma. — PhD Thesis. Harvard University, Cambridge 1964.Google Scholar
  39. Ribeiro, R., Machado, E., Santos, M. and Oliveira, R.: Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions. — Photosynthetica 47: 215–222, 2009.CrossRefGoogle Scholar
  40. Santos, R.C.: [Growth, morphology and conservation of Brazilian species of the genus Theobroma.] — PhD Thesis. Universidade Estadual de Santa Cruz, Ilhéus 2011. [In Portuguese].Google Scholar
  41. Santos, R.C., Pires, J.L, Correa, R.X.: Morphological characterization of leaf, flower, fruit and seed traits among Brazilian Theobroma L. species. — Genet. Resour. Crop Evol. 59: 327–345, 2009.CrossRefGoogle Scholar
  42. Schiefthaler, U., Russel, A.W., Bolhàr-Nordenkampf, H.R., Critchley, C.: Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. — Aust. J. Plant Physiol. 26: 485–494, 1999.CrossRefGoogle Scholar
  43. Sims, D.A., Pearcy, R.W.: Photosynthesis and respiration in Alocasia macrorrhiza following transfers to high and low light. — Oecologia 86: 447–453, 1991.CrossRefGoogle Scholar
  44. Straus-Debenedetti, S., Bazzaz, F.A.: Photosynthetic characteristics of tropical trees along successional gradients. — In: S.S. Mulkey S.S., Chazdon R.L., Smith A.P (ed.): Tropical Forest Plant Ecophysiology. Pp.162–186. Chapman Hall, New York 1996.CrossRefGoogle Scholar
  45. Souza, J.O., Jr.: [Substrates and fertlization for cacao clonal seedlings.] — PhD Thesis, Universidade de São Paulo, São Paulo 2007. [In Portuguese].Google Scholar
  46. Vats, S. K., Pandey, S., Nagar, P.K.: Photosynthetic response to irradiance in Valeriana jatamansi Jones, a threatened understorey medicinal herb of Western Himalaya. — Photosynthetica 40: 625–628, 2002.CrossRefGoogle Scholar
  47. Venturieri, G.A., Aguiar, J.P.L.: [Chocolate composition of cupuassu almonds (Theobroma grandiflorum Willd. ex Spreng. Schum.)]. — Acta Amazônica 18: 3–8. 1988. [In Portuguese].Google Scholar
  48. Zhang, S.; Ma, K.; Chen, L.: Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. — Environ. Exp. Bot. 49: 121–133, 2003.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • A. -A. F. Almeida
    • 1
  • F. P. Gomes
    • 1
  • R. P. Araujo
    • 1
  • R. C. Santos
    • 2
  • R. R. Valle
    • 1
    • 2
  1. 1.Departamento de Ciências BiológicasUniversidade Estadual de Santa Cruz (DCB/UESC)Ilhéus, BABrazil
  2. 2.Centro de Pesquisas do CacauComissão Executiva do Plano da Lavoura Cacaueira (CEPEC/CEPLAC)Itabuna, BABrazil

Personalised recommendations