Photosynthetica

, Volume 51, Issue 2, pp 163–190 | Cite as

Photosynthesis under stressful environments: An overview

Review

Abstract

Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants.

Additional key words

drought fluorescence gas exchange heat photosynthesis photosynthetic pigments salinity, salinity stress 

Abbreviations

ABA

abscisic acid

ALA

5-aminolevulinic acid

Car

carotenoids

Chl

chlorophyll

Fi

the fluorescence at transient inflection level

Fo

the minimal fluorescence

Fm

the maximal fluorescence

Fp

the fluorescence at peak level

Fv

the variable fluorescence

gs

stomatal conductance

LHC

light harvesting complex

MAPKs

mitogen-activated protein kinases

NADPH

reduced form of nicotinamide adenine dinucleotide phosphate

NADP-ME

NADP-malic enzyme

OEC

oxygen evolving complex

qN or NPQ

nonphotochemical quenching

Pchlide

protochlorophyllide

PEPC

phosphoenolpyruvate carboxylase

PN

net photosynthetic rate

PPDK

phosphopyruvate dikinase

PSII

photosystem II

qP

photochemical quenching

RWC

relative water content

Rubisco

ribulose-1,5-bisphosphate carboxylase/oxygenase

RUBP

ribulose-1,5-bisphosphate

WUE

water-use efficiency

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel Samad, H.M.: Counteraction of NaCl and CaCl2 or KCl on pigment, saccharide and mineral contents in wheat. — Biol. Plant. 35: 555–560, 1993.CrossRefGoogle Scholar
  2. Abdel-Latif, A.: Phosphoenolpyruvate carboxylase activity of wheat and maize seedlings subjected to salt stress. — Aust. J. Basic Appl. Sci. 2: 37–41, 2008.Google Scholar
  3. Abdeshahian, M., Nabipour, M., Meskarbashee, M.: Chlorophyll fluorescence as criterion for the diagnosis salt stress in wheat (Triticum aestivum) plants. — Int. J. Chem. Biol. Eng. 4: 184–186, 2010.Google Scholar
  4. Akram, M.S., Ashraf, M.: Exogenous application of potassium dihydrogen phosphate can alleviate the adverse effects of salt stress on sunflower (Helianthus annuus L.). — J. Plant Nutr. 34: 1041–1057, 2011.CrossRefGoogle Scholar
  5. Akram, M.S., Athar, H.U.R., Ashraf, M.: Improving growth and yield of sunflower (Helianthus annuus L.) by foliar application of potassium hydroxide (KOH) under salt stress. — Pak. J. Bot. 39: 769–776, 2007.Google Scholar
  6. Akram, N.A., Ashraf, M.: Improvement in growth, chlorophyll pigments and photosynthetic performance in salt-stressed plants of sunflower (Helianthus annuus L.) by foliar application of 5-aminolevulinic acid. — Agrochimica 55: 94–104, 2011.Google Scholar
  7. Ali, Q., Athar, H.R., Ashraf, M.: Modulation of growth, photosynthetic capacity and water relations in salt stressed wheat plants by exogenously applied 24-epibrassinolide. — Plant Growth Regul. 56: 107–116, 2008.CrossRefGoogle Scholar
  8. Allakhverdiev, S.I., Los, D.A., Mohanty, P., Nishiyama, Y., Murata, N.: Glycinebetaine alleviates the inhibitory effect of moderate heat stress on the repair of photosystem II during photoinhibition. — Biochim. Biophys. Acta 1767: 1363–1371, 2007.PubMedCrossRefGoogle Scholar
  9. Al-Taweel, K., Iwaki, T., Yabuta, Y., Shigeoka, S., Murata, N., Wadano, A.: A bacterial transgene for catalase protects translation of D1 protein during exposure of salt-stressed tobacco leaves to strong light. — Plant Physiol. 145: 258–265, 2007.PubMedCrossRefGoogle Scholar
  10. Aniszewski, T., Drozdov, S.N., Kholoptseva, E.S., Kurets, V.K., Obshatko, L.A., Popov, E.G. Talanov, A.V.: Effects of light and temperature parameters on net photosynthetic carbon dioxide fixation by whole plants of five lupin species (Lupinus albus L., Lupinus angustifolius L., Lupinus luteus L., Lupinus mutabilis Sweet. and Lupinus polyphyllus Lindl.). — Acta Agr. Scand., Sect. B, Soil Plant Sci. 51: 17–27, 2001.Google Scholar
  11. Anjum, S.A., Xie, X, Wang, L. et al.: Morphological, physiological and biochemical responses of plants to drought stress. — Afr. J. Agr. Res. 6: 2026–2032, 2011.Google Scholar
  12. Aragao, M.E.F., Guedes, M.M., Otoch, M.L.O., Guedes, M.I.F., Melo, D.F., Lima, M.G.S.: Differential responses of ribulose-1,5-bisphosphate carboxylase/oxygenase activities of two Vigna unguiculata cultivars to salt stress. — Braz. J. Plant Physiol. 17: 207–212, 2005.CrossRefGoogle Scholar
  13. Araus, J.L., Amaro, T., Voltas, J. et al.: Chlorophyll fluorescence as a selection criterion for grain yield in durum wheat under Mediterranean conditions. — Field Crops Res. 55: 209–223, 1998.CrossRefGoogle Scholar
  14. Arfan, M., Athar, H. R., Ashraf, M.: Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in differently adapted spring wheat cultivars under salt stress? — J. Plant Physiol. 6: 685–694, 2007.CrossRefGoogle Scholar
  15. Ashraf, M.: Breeding for salinity tolerance in plants. — Crit. Rev. Plant Sci. 13: 17–42, 1994.Google Scholar
  16. Ashraf, M.: Relationships between growth and gas exchange characteristics in some salt-tolerant amphidiploid Brassica species in relation to their diploid parents. — Environ. Exp. Bot. 45: 155–163, 2001.PubMedCrossRefGoogle Scholar
  17. Ashraf, M.: Some important physiological selection criteria for salt tolerance in plants. — Flora 199: 361–376, 2004.CrossRefGoogle Scholar
  18. Ashraf, M.: Biotechnological approach of improving plant salt tolerance using antioxidants as markers. — Biotechnol. Adv. 27: 84–93, 2009.PubMedCrossRefGoogle Scholar
  19. Ashraf, M., Ali, Q.: Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). — Environ. Exp. Bot. 63: 266–273, 2008.CrossRefGoogle Scholar
  20. Ashraf, M., Karim, F.: Screening of some cultivars/lines of black gram (Vigna mungo I., Hepper) for resistance to water stress. — Trop. Agr. 68: 57–62, 1991.Google Scholar
  21. Ashraf, M., Mehmood, S.: Response of four Brassica species to drought stress. — Environ. Exp. Bot. 30: 93–100, 1990.CrossRefGoogle Scholar
  22. Ashraf, M., Nawazish, S., Athar, H.R.: Are chlorophyll fluorescence and photosynthetic capacity potential physiological determinants of drought tolerance in maize (Zea mays L.). — Pak. J. Bot. 39: 1123–1131, 2007.Google Scholar
  23. Ashraf, M., O’Leary, J.W.: Responses of some newly developed salt-tolerant genotypes of spring wheat to salt stress, II. Water relations and photosynthetic capacity. — Acta Bot. Neerl. 45: 29–39, 1996.Google Scholar
  24. Ashraf, M., Sultana, R.: Combination effect of NaCl salinity and N-form on mineral composition of sunflower plants. — Biol. Plant. 43: 615–619, 2000.CrossRefGoogle Scholar
  25. Ashraf, M.Y., Azmi, A.R., Khan, A.H., Ala, S.A.: Effect of water stress on total phenol, peroxidase activity and chlorophyll contents in wheat (Triticum aestivum L.). — Acta Physiol. Plant. 16: 185–191, 1994.Google Scholar
  26. Athar, H., Ashraf, M.: Photosynthesis under drought stress. — In: Pessarakli, M. (ed.): Photosynthesis, 2nd Ed. Pp. 795–810. CRC Press, New York 2005.Google Scholar
  27. Baker, N.R.: Chlorophyll fluorescence: A probe of photosynthesis in vivo. — Annu. Rev. Plant Biol. 59: 89–113, 2008.PubMedCrossRefGoogle Scholar
  28. Baker, N.R., Rosenqvist, E.: Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. — J. Exp. Bot. 55: 1607–1621, 2004.PubMedCrossRefGoogle Scholar
  29. Balouchi, H.R.: Screening wheat parents of mapping population for heat and drought tolerance, detection of wheat genetic variation. — Int. J. Biol. Life Sci. 6: 56–66, 2010.Google Scholar
  30. Bączek-Kwinta, R., Kozieł, A., Seidler-Łożykowska, K.: Are the fluorescence parameters of German chamomile leaves the first indicators of the anthodia yield in drought conditions? — Photosynthetica 49: 87–97, 2011.CrossRefGoogle Scholar
  31. Bayramov, S.M., Babayev, H.G., Khaligzade, M.N. et al.: Effect of water stress on protein content of some Calvin cycle enzymes in different wheat genotypes. — PANAS 65: 106–111, 2010.Google Scholar
  32. Begonia, G.B., Begonia, M.T.: Plant photosynthetic production as controlled by leaf growth, phenology, and behavior. — Photosynthetica 45: 321–333, 2007.CrossRefGoogle Scholar
  33. Benfey, P.N., Chua, N.H.: The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. — Science 25: 959–966, 1990.CrossRefGoogle Scholar
  34. Berry, J.A., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant Physiol. 31: 491–543, 1980.CrossRefGoogle Scholar
  35. Bijanzadeh, E., Emam, Y.: Effect of defoliation and drought stress on yield components and chlorophyll content of wheat. — Pak. J. Biol. Sci. 13: 699–705, 2010.PubMedCrossRefGoogle Scholar
  36. Biswal, B., Joshi, P.N., Raval, M.K., Biswal, U.C.: Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation. — Curr. Sci. 101: 47–56, 2011.Google Scholar
  37. Biswal, B., Raval, M.K., Biswal, U.C., Joshi, P.: Response of photosynthetic organelles to abiotic stress: modulation by sulfur metabolism. — In: Khan, N.A., Singh, S., Umar, S. (ed.): Sulfur Assimilation and Abiotic Stress in Plants. Pp. 167–191. Springer-Verlag, Berlin — Heidelberg 2008.CrossRefGoogle Scholar
  38. Bousba, R., Ykhlef, N., Djekoun, A.: Water use efficiency and flag leaf photosynthetic in response to water deficit of durum wheat (Triticum durum Desf.). — World J. Agr. Sci. 5: 609–616, 2009.Google Scholar
  39. Brock, M.T., Galen, C.: Drought tolerance in the alpine dandelion, Taraxacum ceratophorum (Asteraceae), its exotic congenter T. officinale and interspecific hybrids under natural and experimental conditions. — Amer. J. Bot. 92: 1311–1321, 2005.CrossRefGoogle Scholar
  40. Brown, R.H., Bouton, J.H.: Physiology and genetics of interspecific hybrids between phytosynthetic type. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 435–456, 1993.CrossRefGoogle Scholar
  41. Brugnoli, E., Scartazza, A., De Tullio, M.C., et al.: Zeaxanthin and non-photochemical quenching in sun and shade leaves of C3 and C4 plants. — Physiol. Plant. 104: 727–734, 1998.CrossRefGoogle Scholar
  42. Caires, A.R.L., Scherer, M.D., Santos, T.S.B., Pontim, B.C.A., Gavassoni, W.L., Oliveira, S.L.: Water stress response of conventional and transgenic soybean plants monitored by chlorophyll a fluorescence. — J. Fluorescence 20: 645–649, 2010.CrossRefGoogle Scholar
  43. Camejo, D., Rodríguez, P., Morales, A.M. et al.: High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. — J. Plant Physiol. 162: 281–289, 2005.PubMedCrossRefGoogle Scholar
  44. Centritto, M., Brilli, F., Fodale, R. et al.: Different sensitivity of isoprene emission, respiration and photosynthesis to high growth temperature coupled with drought stress in black poplar (Populus nigra) saplings. — Tree Physiol. 31: 258–261, 2011.CrossRefGoogle Scholar
  45. Chandra Babu, R., Srinivasan, P., Natarajaratnam, N., Rangasamy, S.: Relationship between leaf photosynthetic rate and yield in blackgram (Vigna mungo L. Hepper) genotypes. — Photosynthetica 19: 159–163, 1985.Google Scholar
  46. Chattopadhyay, S., Ang, L.H., Puente, P. et al.: Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. — Plant Cell 10: 673–683, 1998.PubMedGoogle Scholar
  47. Chaves, M.M., Flexas, J., Pinheiro, C.: Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. — Ann. Bot. 103: 551–560, 2009.PubMedCrossRefGoogle Scholar
  48. Chinthapalli, B., Murmu, J., Raghavendra, A.S.: Dramatic difference in the responses of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants. — J. Exp. Bot. 54: 707–714, 2003.PubMedCrossRefGoogle Scholar
  49. Conde, A., Chaves, M.M., Gerós, H.: Membrane transport, sensing and signaling in plant adaptation to environmental stress. — Plant Cell Physiol. 52: 1583–1602, 2011.PubMedCrossRefGoogle Scholar
  50. Cornish, K., Radin, J.W., Turcotte, E.L., Luand, Z., Zeiger, E.: Enhanced photosynthesis and stomatal conductance of Pima cotton (Gossypium barbadense L.) bred for increased yield. — Plant Physiol. 97: 484–489, 1991.PubMedCrossRefGoogle Scholar
  51. Crafts-Brandner, S.J., Salvucci, M.E.: Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. — Proc. Natl. Acad. Sci. USA 97: 13430–13435, 2000.PubMedCrossRefGoogle Scholar
  52. Crafts-Brandner, S.J., Salvucci, M.E.: Sensitivity of photosynthesis in a C4 plant maize to heat stress. — Plant Physiol. 129: 1773–1780, 2002.PubMedCrossRefGoogle Scholar
  53. Crosbie, T.M., Pearce, R.B.: Effects of recurrent phenotypic selection for high and low photosynthesis on agronomic traits in two maize populations. — Crop Sci. 22: 809–813, 1982.CrossRefGoogle Scholar
  54. Curtis, P.S., Läuchli, A.: The role of leaf area development and photosynthetic capacity in determining growth of kenaf under moderate salt stress. — Aust. J. Plant Physiol. 13: 353–365, 1986.CrossRefGoogle Scholar
  55. Curtiss, J., Rodriguez-Uribe, L., Stewart, J.M., Zhang, J.: Identification of differentially expressed genes associated with semigamy in pima cotton (Gossypium barbadense L.) through comparative microarray analysis. — BMC Plant Biol. 11: 49, 2011.PubMedCrossRefGoogle Scholar
  56. da Graça, J.P., Rodrigues, F.A., Farias, J.R.B., de Oliveira, M.C.N., Hoffmann-Campo, C.B., Zingaretti, S.M.: Physiological parameters in sugarcane cultivars submitted to water deficit. — Braz. J. Plant Physiol. 22: 189–197, 2010.CrossRefGoogle Scholar
  57. da Silva, E.N., Ribeiro, R.V., Ferreira-Silva, S.L., Viégas, R.A., Silveira, J.A.G.: Salt stress induced damages on the photosynthesis of physic nut young plants. — Sci. Agr. 68: 62–68, 2011.CrossRefGoogle Scholar
  58. Dai, X., Xu, Y., Ma, O., et al.: Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. — Plant Physiol. 143: 1739–1751, 2007.PubMedCrossRefGoogle Scholar
  59. Damayanthi, M.M.N., Mohotti, A.J., Nissanka, S.P.: Comparison of tolerant ability of mature field grown tea (Camellia sinensis L.) cultivars exposed to a drought stress in passara area. — Trop. Agr. Res. 22: 66–75, 2010.Google Scholar
  60. David, M.M., Coelho, D., Barrote, I., Correia, M. J.: Leaf age effects on photosynthetic activity and sugar accumulation in droughted and rewatered Lupinus albus plants. — Aust. J. Plant Physiol. 25: 299–306, 1998.CrossRefGoogle Scholar
  61. Davison, P.A., Hunter, C.N., Horton, P.: Overexpression of β-carotene hydroxylase enhances stress tolerance in Arabidopsis. — Nature 418: 203–206, 2002.PubMedCrossRefGoogle Scholar
  62. Demmig-Adams, B., Adams, W.W. III: Carotenoid composition in sun and shade leaves of plants with different life forms. — Plant Cell Environ. 15: 411–419, 1992.CrossRefGoogle Scholar
  63. Dias, M.C., Brüggemann, W.: Limitations of photosynthesis in Phaseolus vulgaris under drought stress: gas exchange, chlorophyll fluorescence and Calvin cycle enzymes. — Photosynthetica 48: 96–102, 2010a.CrossRefGoogle Scholar
  64. Dias, M.C., Brüggemann, W.: Water-use efficiency in Flaveria species under drought-stress conditions. — Photosynthetica 48: 469–473, 2010b.CrossRefGoogle Scholar
  65. Diédhiou, C.J., Popova, O.V., Dietz, K.J., Golldack, D.: The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. — BMC Plant Biol. 8: 49, 2008.PubMedCrossRefGoogle Scholar
  66. Din, J., Khan, S.U., Ali, I., Gurmani, A.R.: Physiological and agronomic response of canola varieties to drought stress. — J. Anim. Plant Sci. 21: 78–82, 2011.Google Scholar
  67. Dobrikova, A., Petkanchin, I., Taneva, S.G.: Temperatureinduced changes in the surface electric properties of thylakoids and photosystem II membrane fragments. — Colloid. Surface. A 209: 185–192, 2002.CrossRefGoogle Scholar
  68. Dodd, I.C.: Hormonal interactions and stomatal responses. — J. Plant Growth Regul. 22: 32–46, 2003.CrossRefGoogle Scholar
  69. Doubnerová, V., Ryšlavá, H.: What can enzymes of C4 photosynthesis do for C3 plants under stress? — Plant Sci. 180: 575–583, 2011.PubMedCrossRefGoogle Scholar
  70. Du, Y.C., Nose, A., Wasano, K., Uchida, Y.: Responses to water stress of enzyme activities and metabolite levels in relation to sucrose and starch synthesis, the Calvin cycle and the C4 pathway in sugarcane (Saccharum sp.) leaves. — Aust. J. Plant Physiol. 25: 253–260, 1998.CrossRefGoogle Scholar
  71. Duan, H.G., Yuan, S., Liu, W.J. et al.: Effects of exogenous spermidine on photosystem II of wheat seedlings under water stress. — J. Integr. Plant Biol. 48: 920–927, 2006.CrossRefGoogle Scholar
  72. Dulai, S., Molnár, I., Molnár-Láng, M.: Changes of photosynthetic parameters in wheat/barley introgression lines during salt stress. — Acta Biol. Szeged 55: 73–75, 2011.Google Scholar
  73. Dutta, S., Mohanty, S., Tripathy, B.C.: Role of temperature stress on chloroplast biogenesis and protein import in pea. — Plant Physiol. 150: 1050–1061, 2009.PubMedCrossRefGoogle Scholar
  74. Eckardt, N.A.: A new chlorophyll degradation pathway. — Plant Cell 21: 700, 2009.PubMedCrossRefGoogle Scholar
  75. Efeoglu, B., Ekmekçi, Y., Çiçek, N.: Physiological responses of three maize cultivars to drought stress and recovery. — S. Afr. J. Bot. 75: 34–42, 2009.CrossRefGoogle Scholar
  76. Efeoglu, B., Terzioglu, S., Photosynthetic responses of two wheat varieties to high temperature. — EurAsia J. BioSci. 3: 97–106, 2009.CrossRefGoogle Scholar
  77. El-Shintinawy, F.: Photosynthesis in two wheat cultivars differing in salt susceptibility. — Photosynthetica 38: 615–620, 2000.CrossRefGoogle Scholar
  78. Estill, K., Delaney, R.H., Smith, W.K., Ditterline, R.L.: Water relations and productivity of alfalfa leaf chlorophyll variants. — Crop Sci. 31: 1229–1233, 1991.CrossRefGoogle Scholar
  79. Everard, J.D., Gucci, R, Kann, S.C., Flore, J.A., Loescher, W.H.: Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity. — Plant Physiol. 106: 281–292, 1994.PubMedGoogle Scholar
  80. Fang, Z., Bouwkamp, J., Solomos, T.: Chlorophyllase activities and chlorophyll degradation during leaf senescence in nonyellowing mutant and wild type of Phaseolus vulgaris L. — J. Exp. Bot. 49: 503–510, 1998.Google Scholar
  81. Faville, M.J., Silvester, W.B., Allan Green, T.G., Jermyn, W.A.: Photosynthetic characteristics of three asparagus cultivars differing in yield. — Crop Sci. 39: 1070–1077, 1999.CrossRefGoogle Scholar
  82. Feng, L.L., Han, Y.J., Liu, G. et al.: Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants. — Funct. Plant Biol. 34: 822–834, 2007.CrossRefGoogle Scholar
  83. Fischer, R.A., Rees, D., Sayre, K.D. et al.: Wheat yield progress is associated with higher stomatal conductance, higher photosynthetic rate and cooler canopies. — Crop Sci. 38: 1467–1475, 1998.CrossRefGoogle Scholar
  84. Flagella, Z., Campanile, R.G., Ronga, G. et al.: The maintenance of photosynthetic electron transport in relation to osmotic adjustment in durum wheat cultivars differing in drought resistance. — Plant Sci. 118: 127–133, 1996.CrossRefGoogle Scholar
  85. Flexas, J., Bota, J., Escalona, J.M. et al.: Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. — Funct. Plant Biol. 29: 461–471, 2002.CrossRefGoogle Scholar
  86. Flexas, J., Bota, J., Loreto, F. et al.: Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. — Plant Biol. 6: 269–279, 2004.PubMedCrossRefGoogle Scholar
  87. Flowers, T.J., Troke, P.F., Yeo, A.R.: The mechanism of salt tolerance in halophytes. — Annu. Rev. Plant Physiol. 28: 89–121, 1977.CrossRefGoogle Scholar
  88. Freschi, L., Mercier, H.: Connecting environmental stimuli and crassulacean acid metabolism expression: Phytohormones and other signaling molecules. — Prog. Bot. 73: 231–255, 2012.CrossRefGoogle Scholar
  89. Fristedt, R., Willig, A., Granath, A. et al.: Phosphorylation of photosystem II controls functional macroscopic folding of photosynthetic membranes in Arabidopsis. — Plant Cell 21: 3950–3964, 2009.PubMedCrossRefGoogle Scholar
  90. Fukayama, H., Tsuchida, H., Agarie, S.: Significant accumulation of C4-specific pyruvate, orthophosphate dikinase in a C3 plant, rice. — Plant Physiol. 127: 1136–1146, 2001.PubMedCrossRefGoogle Scholar
  91. Fukushima, E., Arata, Y., Endo, T. et al.: Improved salt tolerance of transgenic tobacco expressing apoplastic yeastderived invertase. — Plant Cell Physiol. 42: 245–249, 2001.PubMedCrossRefGoogle Scholar
  92. Galmés, J., Medrano, H., Flexas, J.: Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. — New Phytol. 175: 81–93, 2007.PubMedCrossRefGoogle Scholar
  93. Galmés, J., Ribas-Carbó, M., Medrano, H., Flexas, J.: Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. — J. Exp. Bot. 62: 653–665, 2011.PubMedCrossRefGoogle Scholar
  94. Garg, A., Kim, J.K., Owens, T.G., et al.: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. — Proc. Natl. Acad. Sci. USA 99: 15898–15903, 2002.PubMedCrossRefGoogle Scholar
  95. Geissler, N., Hussin, S., Koyro, H.W.: Interactive effects of NaCl salinity and elevated atmospheric CO2 concentration on growth, photosynthesis, water relations and chemical composition of the potential cash crop halophyte Aster tripolium L. — Environ. Exp. Bot. 65: 220–231, 2009.CrossRefGoogle Scholar
  96. Ghosh, S., Bagchi, S., Majumder, A.L.: Chloroplast fructose-1,6-bisphosphatase from Oryza differs in salt tolerance property from the Porteresia enzyme and is protected by osmolytes. — Plant Sci. 160: 1171–1181, 2001.PubMedCrossRefGoogle Scholar
  97. Gill, S.S, Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.PubMedCrossRefGoogle Scholar
  98. Gill, S.S., Khan, N.A., Tuteja, N.: Differential cadmium stress tolerance in five indian mustard (Brassica juncea L.) cultivars: An evaluation of the role of antioxidant machinery. — Plant Signal Behav. 6: 293–300, 2011.PubMedCrossRefGoogle Scholar
  99. Gimenez, C., Mitchell, V.J., Lawlor, D.W.: Regulation of photosynthesis rate of two sunflower hybrids under water stress. — Plant Physiol. 98: 516–524, 1992.PubMedCrossRefGoogle Scholar
  100. Gomathi, R., Rakkiyapan, P.: Comparative lipid peroxidation, leaf membrane thermostability, and antioxidant system in four sugarcane genotypes differing in salt tolerance. — Int. J. Plant Physiol. Biochem. 3: 67–74, 2011.Google Scholar
  101. Gombos, Z., Wada, H., Hideg, E., Murata, N.: The unsaturation of membrane lipids stabilizes photosynthesis against heat stress. — Plant Physiol. 104: 563–567, 1994.PubMedGoogle Scholar
  102. Goodall, G.J., Filipowicz, W.: Different effects of intron nucleotide composition and secondary structure on premRNA splicing in monocot and dicot plants. — EMBO J. 10: 2635–2644, 1991.PubMedGoogle Scholar
  103. Guidi, L., Nali, C., Ciompi, S. et al.: The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. — J. Exp. Bot. 48: 173–179, 1997.CrossRefGoogle Scholar
  104. Gunasekera, D., Berkowitz, G.A.: Use of transgenic plants with ribulose-1,5-bisphosphate carboxylase/oxygenase antisense DNA to evaluate the rate limitation of photosynthesis under water stress. — Plant Physiol. 103: 629–635, 1993.PubMedGoogle Scholar
  105. Guo, B.Z., Butrón, A., Li, H., Widstrom, N.W., Lynch, R.E.: Restriction fragment length polymorphism assessment of the heterogeneous nature of maize population GT-MAS:gk and field evaluation of resistance to aflatoxin production by Aspergillus flavus. — J. Food Prot. 65: 167–171, 2002.PubMedGoogle Scholar
  106. Guóth, A., Tari, I., Gallé, I., et al.: Chlorophyll a fluorescence induction parameters of flag leaves characterize genotypes and not the drought tolerance of wheat during grain filling under water deficit. — Acta Biol. Szeged. 53: 1–7, 2009.Google Scholar
  107. Haldimann, P., Strasser, R.J.: Effects of anaerobiosis as probed by the polyphasic chlorophyll fluorescence rise kinetics in pea (Pisum sativum L.). — Photosynth. Res. 62: 67–83, 1999.CrossRefGoogle Scholar
  108. Hamada, A.M., Al-Hakimi, A.M.A.: Salicylic acid versus salinity-drought induced stress on wheat seedlings. — Rostlinná výroba 47: 444–450, 2001.Google Scholar
  109. Hamada, A.M., El-Enany, A.E.: Effect of NaCl salinity on growth, pigment and mineral element contents, and gas exchange of broad bean and pea plants. — Biol. Plant. 36: 75–81, 1994.CrossRefGoogle Scholar
  110. Hamdani, S., Gauthier, A., Msilini, N., Carpentier, R.: Positive charges of polyamines protect PSII in isolated thylakoid membranes during photoinhibitory conditions. — Plant Cell Physiol. 52: 866–873, 2011.PubMedCrossRefGoogle Scholar
  111. Hamilton, D.W.A., Hills, A., Kohler, B., Blatt, M.R.: Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. — Proc. Natl. Acad. Sci. USA 97: 4967–4972, 2000.PubMedCrossRefGoogle Scholar
  112. Han, W., Xu, X.W., Li, L. et al.: Chlorophyll a fluorescence responses of Haloxylon ammodendron seedlings subjected to progressive saline stress in the Tarim desert highway ecological shelterbelt. — Photosynthetica 48: 635–640, 2010.CrossRefGoogle Scholar
  113. Harb, A., Krishnan, A., Madana, M.R.: Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. — Plant Physiol. 154: 1254–1271, 2010.PubMedCrossRefGoogle Scholar
  114. Harpaz-Saad, S., Azoulay, T., Arazi, T. et al.: Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. — Plant Cell 19: 1007–1022, 2007.PubMedCrossRefGoogle Scholar
  115. Häusler, R.E., Hirsch, H.J., Kreuzaler, F., Peterhansel, C.: Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. — J. Exp. Bot. 53: 591–607, 2002.PubMedCrossRefGoogle Scholar
  116. Havaux, M.: Short-term responses of photosystem I to heat stress — Induction of a PS II-independent electron transport through PS I fed by stromal components. — Photosynth. Res. 47: 85–97, 1996.CrossRefGoogle Scholar
  117. Havaux, M., Ernez, M., Lannoye, R.: Correlation between heat tolerance and drought tolerance in cereals demonstrated by rapid chlorophyll fluorescence tests. — J. Plant Physiol. 133: 555–560, 1988.CrossRefGoogle Scholar
  118. Havaux, M., Tardy, F., Ravene, J. et al.: Thylakoid membrane stability to heat stress studied by flash spectroscopic measurements of the electrochromic shift in intact potato leaves: influence of the xanthophyll content. — Plant Cell Environ. 19: 1359–1368, 1996.CrossRefGoogle Scholar
  119. Hawkins, H. J., Lewis, O.A.M.: Combination effect of NaCl salinity, nitrogen form and calcium concentration on the growth and ionic content and gaseous properties of Triticum aestivum L. cv. Gamtoos. — New Phytol. 124: 161–170, 1993.CrossRefGoogle Scholar
  120. He, J.X., Wang, J., Liang, H.G.: Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. — Physiol. Plant. 93: 771–777, 1995.CrossRefGoogle Scholar
  121. Hernandez, J.A., Olmos, E., Corpas, F.J. et al.: Salt-induced oxidative stress in chloroplasts of pea plants. — Plant Sci. 105: 151–167, 1995.CrossRefGoogle Scholar
  122. Hester, M.W., Mendelsohn, I.A., Mckee, K.L.: Species and population variation to salinity stress in Panicum hemitomon, Spartina patens, and Spartina alterniflora: morphological and physiological constraints. — Environ. Exp. Bot. 46: 277–297, 2001.CrossRefGoogle Scholar
  123. Hieber, A.D., Kawabata, O., Yamamoto, H.Y.: Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiacylglycerol micelles. — Plant Cell Physiol. 45: 92–102, 2004.PubMedCrossRefGoogle Scholar
  124. Hirel, B., Le Gouis, J., Ney, B., Gallais, A.: The challenge of improving nitrogen use efficiency in crop plants towards a more central role for genetic variability and quantitative genetics within integrated approaches. — J. Exp. Bot. 58: 2369–2387, 2007.PubMedCrossRefGoogle Scholar
  125. Huang, H., Zhang, Q., Zhao, L. et al..: Lutein plays a key role in the protection of photosynthetic apparatus in arabidopsis under severe oxidative stress? — Pak. J. Bot. 42: 2765–2774, 2010.Google Scholar
  126. Huang, X., Luo, T., Fu, X. et al.: Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. — J. Exp. Bot. 62: 5191–5206, 2011.PubMedCrossRefGoogle Scholar
  127. Hudspeth, R.L., Grula, J.W., Dai, Z. et al.: Expression of maize phosphoenolpyruvate carboxylase in transgenic tobacco. Effects on biochemistry and physiology. — Plant Physiol. 98: 458–464, 1992.PubMedCrossRefGoogle Scholar
  128. Hura, T., Grzesiak, S., Hura, K., et al.: Differences in the physiological state between triticale and maize plants during drought stress and followed rehydration expressed by the leaf gas exchange and spectrofluorimetric methods. — Acta Physiol. Plant. 28: 433–443, 2006.CrossRefGoogle Scholar
  129. Huseynova, M., Suleymanov, S.Y., Rustamova S.M., Aliyev. JA.: Drought-induced changes in photosynthetic membranes of two wheat (Triticum aestivum L.) cultivars. — Russ. Biokhimiya 74: 1109–1116, 2009.Google Scholar
  130. Inagaki, M., Omori, E., Kim, J.Y., Komatsu, Y., Scott, G., Ray, M.K., Yamada, G., Matsumoto, K., Mishina, Y., Ninomiya-Tsuji, J.: TAK1-binding protein 1, TAB1, mediates osmotic stress-induced TAK1 activation but is dispensable for TAK1-mediated cytokine signaling. — J. Biol. Chem. 283: 33080–33086, 2008.PubMedCrossRefGoogle Scholar
  131. Isaksson, C., Andersson, S.: Oxidative stress does not influence carotenoid mobilization and plumage pigmentation. — Proc. R Soc. Biol. Sci. Ser. B 275: 309–314, 2008.CrossRefGoogle Scholar
  132. Islam, M.T.: Effect of temperature on photosynthesis, yield attributes and yield of aromatic rice genotypes. — Int. J. Sustain. Crop Prod. 6: 14–16, 2011.Google Scholar
  133. Iwaia, M., Yokonoa, M., Inadab, N., Minagawa, J.: Live-cell imaging of photosystem II antenna dissociation during state transitions. — Proc. Natl. Acad. Sci. USA 107: 2337–2342, 2010.CrossRefGoogle Scholar
  134. Izui, K., Ishijima, S., Yamaguchi, Y. et al.: Cloning and sequence analysis of cDNA encoding active phosphoenolpyruvate carboxylase of the C4-pathway from maize. — Nucleic Acids Res. 14: 1615–1628, 1986.PubMedCrossRefGoogle Scholar
  135. Jafarinia, M., Shariati, M.: Effects of salt stress on photosystem II of canola plant (Brassica napus L.) probing by chlorophyll a fluorescence measurements. — Iran. J. Sci. Technol. A1: 71–76, 2012.Google Scholar
  136. Jain, M., Tiwary, S., Gadre, R.: Sorbitol-induced changes in various growth and biochemicalp arameters in maize. — Plant Soil Environ. 56: 263–267, 2010.Google Scholar
  137. Jaleel, C.A., Manivannan, P., Wahid, A. et al.: Drought stress in plants: a review on morphological characteristics and pigments composition. — Int. J. Agr. Biol. 11: 100–105, 2009.Google Scholar
  138. James, R.A., Rivelli, A.R., Munns, R., von Caemmerer, S.: Factors affecting CO2 assimilation, leaf injury and growth in salt-stressed durum wheat. — Funct. Plant Biol. 29: 1393–1403, 2002.CrossRefGoogle Scholar
  139. Jamil, M., Rehman, S., Lee, K.J., Kim, J.M., Kim, H., Rha, E.S.: Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. — Sci. Agr. 64: 111–118, 2007.CrossRefGoogle Scholar
  140. Janknecht, R.: Regulation of the ER81 transcription factor and its coactivators by mitogen- and stress-activated protein kinase 1 (MSK1). — Oncogene 22: 746–755, 2003.PubMedCrossRefGoogle Scholar
  141. Jeanneau, M., Gerentes, D., Foueillassar, X., et al.: Improvement of drought tolerance in maize: towards the functional validation of the Zm-Asr1 gene and increase of water use efficiency by over-expressing C4-PEPC. — Biochimie 84: 1127–1135, 2002.PubMedCrossRefGoogle Scholar
  142. Jia, W., Zhang, J.: Stomatal movements and long-distance signaling in plants. — Plant Signal Behav. 3: 772–777, 2008.PubMedCrossRefGoogle Scholar
  143. Jin, M-X, Li, D-Y, Mi, H.: Effects of high temperature on chlorophyll fluorescence induction and the kinetics of far red radiation-induced relaxation of apparent Fo in maize leaves. — Photosynthetica 40: 581–586, 2002.CrossRefGoogle Scholar
  144. Jonak, C., Ökrész, L., Bögre, L., Hirt, H.: Complexity, cross talk and integration of plant MAP kinase signalling. — Curr. Opin. Plant Biol. 5: 415–424, 2002.PubMedCrossRefGoogle Scholar
  145. Joshi, M.K., Desai, T.S., Mohanty, P.: Temperature-dependent alterations in the pattern of photochemical and nonphotochemical quenching and associated changes in the photosystem II conditions of the leaves. — Plant Cell Physiol. 36: 1221–1227, 1995.Google Scholar
  146. Juan, M., Rivero, R.M., Romero, L., Ruiz, J.M.: Evaluation of some nutritional and biochemical indicators in selecting saltresistant tomato cultivars. — Environ. Exp. Bot. 54: 193–201, 2005.CrossRefGoogle Scholar
  147. Kaewsuksaeng, S.: Chlorophyll degradation in horticultural crops. — Walailak J. Sci. Technol. 8: 9–19, 2011.Google Scholar
  148. Kaiser, W.M., Heber, U.: Photosynthesis under osmotic stress. Effect of high solute concentration on the permeability of the chloroplast envelope and on the activity of stroma enzymes. — Planta 153: 423–429, 1981.CrossRefGoogle Scholar
  149. Kajala, K., Brown, N.J., Williams, B.P. et al.: Multiple Arabidopsis genes primed for recruitment into C4 photosynthesis. — Plant J. 69: 47–56, 2012.PubMedCrossRefGoogle Scholar
  150. Kannan, N.D., Kulandaivelu, G.: Drought induced changes in physiological, biochemical and phytochemical properties of Withania somnifera Dun. — J. Med. Plants Res. 5: 3929–3935, 2011.Google Scholar
  151. Kant, P., Kant, S., Gordon, M., Shaked, R., Barak, S.: STRS1 and STRS2, two DEAD-box RNA helicases that attenuate Arabidopsis responses to multiple abiotic stresses. — Plant Physiol. 145: 814–830, 2007.PubMedCrossRefGoogle Scholar
  152. Karaba, A., Dixit, S., Greco, R. et al.: Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. — Proc. Natl. Acad. Sci. USA 104: 15270–15275, 2007.PubMedCrossRefGoogle Scholar
  153. Kawakami, K., Umenab, Y., Kamiyab, N., Shen, J., Location of chloride and its possible functions in oxygen-evolving photosystem II revealed by X-ray crystallography. — Proc. Natl. Acad. Sci. USA 106: 8567–8572, 2009.PubMedCrossRefGoogle Scholar
  154. Kelly, G.J.: Photosynthesis, carbon metabolism: The Calvin cycle’s golden jubilee. — In: Kelly, G.J., Latzko, E. (ed.): Thirty Years of Photosynthesis 1974–2004. Pp. 382–410, Springer, Heidelberg 2006.CrossRefGoogle Scholar
  155. Kempa, S., Krasensky, J., Dal Santo, S. et al.: A central role of abscisic acid in stress-regulated carbohydrate metabolism. — PLoS ONE 3: 3935, 2008.CrossRefGoogle Scholar
  156. Khafagy, M.A., Arafa, A.A., El-Banna, M.F.: Glycinebetaine and ascorbic acid can alleviate the harmful effects of NaCl salinity in sweet pepper. — Aust. J. Crop Sci. 3: 257–267, 2009.Google Scholar
  157. Khan, M.A., Shirazi, M.U., Khan, M.A. et al.: Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). — Pak. J. Bot. 41: 633–638, 2009.Google Scholar
  158. Kiani, S.P., Grieu, P., Maury, P., Hewezi, T., Gentzbittel, L., Sarrafi, A.: Genetic variability for physiological traits under drought conditions and differential expression of water stress associated genes in sunflower (Helianthus annuus L.). Biomed. — Life Sci. 114: 193–207, 2007.Google Scholar
  159. Kitroongruang, N., Jodo, S., Hisai, J., Kato, M.: Photosynthesis characteristics of melons grown under high temperatures. — J. Japan. Soc. Hort. Sci. 61: 107–114, 1992.CrossRefGoogle Scholar
  160. Kogami, H., Shono, M., Koike, T. et al.: Molecular and physiological evaluation of transgenic tobacco plants expressing a maize phosphoenolpyruvate carboxylase gene under the control of the cauliflower mosaic virus 35S promoter. — Transgenic Res. 3: 287–296, 1994.CrossRefGoogle Scholar
  161. Kohler, B., Blatt, M.R.: Protein phosphorylation activates the guard cell Ca2+ channel and is a prerequisite for gating by abscisic acid. — Plant J. 32: 185–194, 2002.PubMedCrossRefGoogle Scholar
  162. Kossman, J., Sonnewald, U., Willmitzer, L.: Reduction of the chloroplastic fructose-1,6-bisphosphatase in transgenic potato plants impairs photosynthesis and plant growth. — Plant J. 6: 637–650, 1994.CrossRefGoogle Scholar
  163. Kozaki, A., Takeba, G.: Photorespiration protects C3 plants from photooxidation. — Nature 384: 557–560, 1996.CrossRefGoogle Scholar
  164. Krishnan, H.B., Pueppke, S.G.: Heat shock triggers rapid protein phosphorylation in soybean seedlings. — Biochem. Biophys. Res. Commun. 148: 762–767, 1987.PubMedCrossRefGoogle Scholar
  165. Ku, M.S.B., Agarie, S., Nomura, M., et al.: High level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. — Nat. Biotechnol. 17: 76–80, 1999.PubMedCrossRefGoogle Scholar
  166. Kuczyńska, P., Latowski, D., Niczyporuk, S. et al.: Zeaxanthin epoxidation-an in vitro approach. — Acta Biochim. Polonica 59: 105–107, 2012.Google Scholar
  167. Kulshrehtha, S., Mishra, D.P., Gupta, R.K.: Changes in contents of chlorophyll, proteins and lipids in whole chloroplasts and chloroplast membrane fractions at different water potential in drought resistant and sensitive genotypes of wheat. — Photosynthetica 21: 65–70, 1987.Google Scholar
  168. Kumar, A., Li, C., Portis, A.R.J.: Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. — Photosynth. Res. 100: 143–153, 2009.PubMedCrossRefGoogle Scholar
  169. Kumar, S., Singh, B.: Effect of water stress on carbon isotope discrimination and Rubisco activity in bread and durum wheat genotypes. — Physiol. Mol. Biol. Plants 15: 281–286, 2009.PubMedCrossRefGoogle Scholar
  170. Kurek, I., Chang, T.K., Bertain, S.M. et al.: Enhanced thermostability of Arabidopsis rubisco activase improves photosynthesis and growth rates under moderate heat stress. — Plant Cell 19: 3230–3241, 2007.PubMedCrossRefGoogle Scholar
  171. Latowski, D., Åkerlund, H.E., Strzalka, K.: Violaxanthin deepoxidase, the xanthophylls cycle enzyme, requires lipid inverted hexagonal structures for its activity. — Biochemistry 43: 4417–4420, 2004.PubMedCrossRefGoogle Scholar
  172. Lawlor, D.W.: Photosynthesis. 3rd Ed. — Scientific Publishers Limited, Oxford, 2001.Google Scholar
  173. Lawlor, D.W.: Limitation to photosynthesis in water stressed leaves: stomata versus metabolism and the role of ATP. — Ann. Bot. 89: 1–15, 2002.CrossRefGoogle Scholar
  174. Lawlor, D.W.: Musings about the effects of environment on photosynthesis. — Ann. Bot. 103: 543–549, 2009.PubMedCrossRefGoogle Scholar
  175. Lawlor, D.W., Cornic, G.: Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. — Plant Cell Environ. 25: 275–294, 2002.PubMedCrossRefGoogle Scholar
  176. Lawlor, D.W., Tezara, W.: Causes of decreased photosynthetic rate and metabolic capacity in water-deficient leaf cells: a critical evaluation of mechanisms and integration of processes. — Ann. Bot. 103: 543–549, 2009.PubMedCrossRefGoogle Scholar
  177. Lee, Y.P., Kim, S.H., Bang, J.W. et al.: Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. — Plant Cell Rep. 26: 591–598, 2007.PubMedCrossRefGoogle Scholar
  178. Lemeille, S., Rochaix, J.D.: State transitions at the crossroad of thylakoid signalling pathways. — Photosynth. Res. 106: 33–46, 2010.PubMedCrossRefGoogle Scholar
  179. Levi, A., Ovnat, L., Paterson, A.H., Saranga, Y.: Photosynthesis of cotton near-isogenic lines introgressed with QTLs for productivity and drought related traits. — Plant Sci. 177: 88–96, 2009.CrossRefGoogle Scholar
  180. Li, F., Vallabhaneni, R., Yu, J. et al.: The maize phytoene synthase gene family: overlapping roles for carotenogenesis in endosperm, photomorphogenesis and thermal stress tolerance. — Plant Physiol. 147: 1334–1346, 2008.PubMedCrossRefGoogle Scholar
  181. Li, M., Liu, H., Li, L. et al.: Carbon isotope composition of plants along an altitudinal gradient and its relationship to environmental factors on the Qinghal-Tibet Plateau. — Polish J. Ecol. 55: 67–78, 2007.Google Scholar
  182. Li, T., Zhang, Y., Liu, H. et al.: Stable expression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 and salt tolerance in transgenic soybean for over six generations. — Chinese Sci. Bull. 55: 1127–1134, 2010.CrossRefGoogle Scholar
  183. Liu, J., Shi, D.C.: Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acid accumulations of sunflower in responses to salt and salt-alkaline mixed stress. — Photosynthetica 48: 127–134, 2010.CrossRefGoogle Scholar
  184. Liu, N., Ko, S., Yeh, K.C., Charng, Y.: Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. — Plant Sci. 170: 976–985, 2006.CrossRefGoogle Scholar
  185. Liu, X., Wang, Z., Wang, L. et al.: LEA 4 group genes from the resurrection plant Boea hygrometrica confer dehydration tolerance in transgenic tobacco. — Plant Sci. 176: 90–98, 2009.CrossRefGoogle Scholar
  186. Loreto, F., Centritto, M., Chartzoulakis, K.: Photosynthetic limitations in olive cultivars with different sensitivity to salt stress. — Plant Cell Environ. 26: 595–604, 2003.CrossRefGoogle Scholar
  187. Los, D.A., Zorina, A., Sinetova, M. et al.: Stress sensors and signal transducers in cyanobacteria. — Sensors 10: 2386–2415, 2010.PubMedCrossRefGoogle Scholar
  188. Ludlow, M.M., Ng, T.T.: Water stress suspends leaf ageing. — Plant Sci. Lett. 3: 235–240, 1974.CrossRefGoogle Scholar
  189. Lundin, B., Thuswaldner, S., Shutova, T. et al.: Subsequent events to GTP binding by the plant PsbO protein: structural changes, GTP hydrolysis and dissociation from the photosystem II complex. — Biochim. Biophys. Acta 1767: 500–508, 2007.PubMedCrossRefGoogle Scholar
  190. Mafakheri, A., Siosemardeh, A., Bahramnejad, B. et al.: Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. — Aust. J. Crop Sci. 4: 580–585, 2010.Google Scholar
  191. Makino, A.: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. — Plant Physiol. 155: 125–129, 2011.PubMedCrossRefGoogle Scholar
  192. Marques da Silva, J., Arrabica, M.C.: Effect of water stress on Rubisco activity of Setaria sphacelota. — In: Mathis, P. (ed.) Photosynthesis: From Light to Biosphere. Pp. 545–548. Vol. IV. Kluwer, Dordrect — Boston — London 1995.Google Scholar
  193. Matsuoka, M., Furbank, R., Fukayama, H., Miyao, M.: Molecular engineering of C4 photosynthesis. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 297–314, 2001.PubMedCrossRefGoogle Scholar
  194. Mattana, M., Biazzi, E., Consonni, R. et al.: Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. — Physiol. Plant. 125: 212–223, 2005.CrossRefGoogle Scholar
  195. Maxwell, B.B., Andersson, C.R., Poole, D.S. et al.: HY5, Circadian clock-associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression. — Plant Physiol. 133: 1565–1577, 2003.PubMedCrossRefGoogle Scholar
  196. Maxwell, K., Johnson, G.N.: Chlorophyll fluorescence—a practical guide. — J. Exp. Bot. 50: 659–668, 2000.CrossRefGoogle Scholar
  197. Medici, L.O., Azevedo, R.A., Canellas, L.P. et al.: Stomatal conductance of maize under water and nitrogen deficits. — Pesq. Agropec. Bras. 42: 599–601, 2007.CrossRefGoogle Scholar
  198. Medrano, H., Escalona, J.M., Bota, J. et al.: Regulation of photosynthesis of C3 plants in response to progressive drought: the stomatal conductance as a reference parameter. — Ann. Bot. 89: 895–905, 2002.PubMedCrossRefGoogle Scholar
  199. Medrano, H., Parry, M.A.J., Socias, X., Lawlor, D.W.: Longterm water stress inactivates rubisco in subterranean clover. — Ann. Appl. Biol. 131: 491–501, 1997.CrossRefGoogle Scholar
  200. Mehta, P., Jajoo, A., Mathur, S., Bharti, S.: Chlorophyll a fluorescence study revealing effects of high salt stress on photosystem II in wheat leaves. — Plant Physiol. Biochem. 48: 16–20, 2010.PubMedCrossRefGoogle Scholar
  201. Melcher, K., Ng, L.M., Zhou, X.E. et al.: A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. — Nature 462: 602–608, 2009.PubMedCrossRefGoogle Scholar
  202. Mittal, S., Kumari, N., Sharma, V.: Differential response of salt stress on Brassica juncea: Photosynthetic performance, pigment, proline, D1 and antioxidant enzymes. — Plant Physiol. Biochem. 54: 17–26, 2012.PubMedCrossRefGoogle Scholar
  203. Misra, A.N., Latowski, D., Strzalka, K.: The xanthophyll cycle activity in kidney bean and cabbage leaves under salinity stress. — Russ. J. Plant Physiol. 53: 113–121, 2006.CrossRefGoogle Scholar
  204. Miyao, M.: Molecular evolution and genetic engineering of C4 photosynthetic enzymes. — J. Exp. Bot. 54: 179–189, 2003.PubMedCrossRefGoogle Scholar
  205. Mizoguchi, T., Irie, K., Hirayama, T. et al.: A gene encoding a mitogen-activated protein kinase kinase kinase is induced simultaneously with genes for a mitogen-activated protein kinase and an S6 ribosomal protein kinase by touch, cold, and water stress in Arabidopsis thaliana. — Proc. Natl. Acad. Sci. USA 93: 765–769, 1996.PubMedCrossRefGoogle Scholar
  206. Moghaieb, R.E.A., Tanaka, N., Saneoka, H. et al.: Characterization of salt tolerance in ectoine-transformed tobacco plants (Nicotiana tabacum): photosynthesis, osmotic adjustment, and nitrogen partitioning. — Plant Cell Environ. 29: 173–182, 2006.PubMedCrossRefGoogle Scholar
  207. Mohanty, S., Baishna, B.G., Tripathy, C.: Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. — Planta 224: 692–699, 2006.PubMedCrossRefGoogle Scholar
  208. Monirifar, H., Barghi, M.: Identification and selection for salt tolerance in alfalfa (Medicago sativa L.) ecotypes via physiological traits. — Notulae Sci. Biol. 1: 63–66, 2009.Google Scholar
  209. Moradi, F., Ismail, A.M.: Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. — Ann. Bot. 99: 1161–1173, 2007.PubMedCrossRefGoogle Scholar
  210. Moud, A.M., Maghsoudi, K.: Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. — World J. Agr. Sci. 4: 351–358, 2008.Google Scholar
  211. Mumm, P., Wolf, T., Fromm, J. et al.: Cell type-specific regulation of ion channels within the maize stomatal complex. — Plant Cell Physiol. 52: 1365–1375, 2011.PubMedCrossRefGoogle Scholar
  212. Muranaka, S., Shimizu, K., Kato, M.: A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. — Photosynthetica 40: 509–515, 2002.Google Scholar
  213. Nakagami, H, Pitzschke A, Hirt H.: Emerging MAP kinase pathways in plant stress signalling. — Trends Plant Sci. 10: 339–346, 2005.PubMedCrossRefGoogle Scholar
  214. Nash, D., Miyao, M., Murata, N.: Heat inactivation of oxygen evolution in photosystem II particles and its acceleration by chloride depletion and exogenous manganese. — Biochim. Biophys. Acta 807: 127–133, 1985.CrossRefGoogle Scholar
  215. Neta-Sharir, I., Isaacson, T., Lurie, S., Weissa, D.: Dual role for tomato heat shock protein 21: protecting photosystem II from oxidative stress and promoting color changes during fruit maturation. — Plant Cell 17: 1829–1838, 2005.PubMedCrossRefGoogle Scholar
  216. Niyogi, K.K., Björkman, O., Grossman, A.R.: Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. — Plant Cell 9: 1369–1380, 1997.PubMedGoogle Scholar
  217. Noreen, Z., Ashraf, M., Akram, N.A.: Salt-induced modulation in some key gas exchange characteristics and ionic relations in pea (Pisum sativum L.) and their use as selection criteria. — Crop Pasture Sci. 61: 369–378, 2010.CrossRefGoogle Scholar
  218. Noreen, Z., Ashraf, M., Akram, N.A.: Salt-induced regulation of photosynthetic capacity and ion accumulation in some genetically diverse cultivars of radish (Raphanus sativus L.). — J. Appl. Bot. Food Qual. 85: 91–96, 2012.Google Scholar
  219. Omoto, E., Taniguchi, M., Miyake, H.: Effects of salinity stress on the structure of bundle sheath and mesophyll chloroplasts in NAD-malic enzyme and PCK type C4 plants. — Plant Prod. Sci. 13: 169–176, 2010.CrossRefGoogle Scholar
  220. Pan, J., Lin, S., Woodbury, N.W.: Bacteriochlorophyll excitedstate quenching pathways in bacterial reaction centers with the primary donor oxidized. — J. Phys. Chem. B. 116: 2014–2022, 2012.PubMedCrossRefGoogle Scholar
  221. Pan, X., Lada, R.R., Caldwell, C.D., Falk, K.C.: Water-stress and N-nutrition effects on photosynthesis and growth of Brassica carinata. — Photosynthetica 49: 309–315, 2011.CrossRefGoogle Scholar
  222. Parida, A.K., Dagaonkar, V.S., Phalak, M.S. et al.: Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. — Plant Biotechnol. Rep. 1: 37–48, 2007.CrossRefGoogle Scholar
  223. Parida, A.K., Mittra, B., Das, A.B. et al.: High salinity reduces the content of a highly abundant 23-kDa protein of the mangrove Bruguiera parviflora. — Planta 221: 135–140, 2005.PubMedCrossRefGoogle Scholar
  224. Patra, B., Roy, S., Richter, A., Majumder, A.L.: Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methlated inositol. — Protoplasma 245: 143–152, 2010.PubMedCrossRefGoogle Scholar
  225. Percival, G.C.: The use of chlorophyll fluorescence to identify chemical and environmental stress in leaf tissue of three oak (Quercus) species. — J. Arboric. 31: 215–227, 2005.Google Scholar
  226. Peri, P., Martinez, P.G., Lencinas, M.V.: Photosynthetic response to different light intensities and water status of two main Nothofagus species of southern Patagonian forest, Argentina. — J. Forest. Sci. 55: 101–111, 2009.Google Scholar
  227. Perveen, S., Shahbaz, M., Ashraf, M.: Regulation in gas exchange and quantum yield of photosystem II (PSII) in salt-stressed and non-stressed wheat plants raised from seed treated with triacontanol. — Pak. J. Bot. 42: 3073–3081, 2010.Google Scholar
  228. Pettigrew, W., Meredith, J.W.: Leaf gas exchange parameters vary among cotton genotypes. — Crop Sci. 34: 700–705, 1994.CrossRefGoogle Scholar
  229. Piao, S., Ciais, P., Friedlingstein, P. et al.: Net carbon dioxide losses of northern ecosystems in response to autumn warming. — Nature 451: 49–52, 2008.PubMedCrossRefGoogle Scholar
  230. Pinheiro, H.A., Silva, J.V., Endres, L. et al.: Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L.) seedlings subjected to salt stress conditions. — Ind. Crop. Prod. 27: 385–392, 2008.CrossRefGoogle Scholar
  231. Pirzad, A., Shakiba, M.R., Zehtab-Salmasi, S. et al.: Effect of water stress on leaf relative water content, chlorophyll, proline and soluble carbohydrates in Matricaria chamomilla L. — J. Med. Plants Res. 5: 2483–2488, 2011.Google Scholar
  232. Poetsch, W., Hermans, J., Westhoff, P.: Multiple cDNAs of phosphoenolpyruvate carboxylase in the C4 dicot Flaveria trinervia. — FEBS Lett. 292: 133–136, 1991.PubMedCrossRefGoogle Scholar
  233. Popovic, R., Dewez, D., Juneau, P.: Application of chlorophyll fluorescence in ecotoxicology: heavy metals, herbicides, and air pollutants. In: DeEll, J.R., Toivonen, P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 151–184. Kluwer Academic Publishers, Boston 2003.CrossRefGoogle Scholar
  234. Rahnama, A., Poustini, K., Tavakkol-Afshari, R., Tavakoli, A.: Growth and stomatal responses of bread wheat genotypes in tolerance to salt stress. — Int. J. Biol. Life Sci. 6: 216–221, 2010.Google Scholar
  235. Raines, C.A.: Transgenic approaches to manipulate the environmental responses of the C3 carbon fixation cycle. — Plant Cell Environ. 29: 331–339, 2006.PubMedCrossRefGoogle Scholar
  236. Raines, C.A.: Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. — Plant Physiol. 155: 36–42, 2011.PubMedCrossRefGoogle Scholar
  237. Rawson, H.M., Richards, R.A., Munns, R.: An examination of selection criteria for salt tolerance in wheat, barley and triticale genotypes. — Aust. J. Agr. Res. 39: 759–772, 1988.CrossRefGoogle Scholar
  238. Raza, S.H., Athar, H.R., Ashraf, M.: Influence of exogenously applied glycinebetaine on the photosynthetic capacity of two differently adapted wheat cultivars under salt stress. — Pak. J. Bot. 38: 341–351, 2006.Google Scholar
  239. Raza, S.H., Athar, H.R., Ashraf, M., Hameed, A.: GB-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. — Environ. Exp. Bot. 60: 368–378, 2007.CrossRefGoogle Scholar
  240. Reda, F., Mandoura, H.M.H.: Response of enzymes activities, photosynthetic pigments, proline to low or high temperature stressed wheat plant (Triticum aestivum L.) in the presence or absence of exogenous proline or cysteine. — Int. J. Acad. Res. 3: 108–115, 2011.Google Scholar
  241. Rexroth, S., Mullineaux, C.W., Ellinger, D. et al.: The plasma membrane of the cyanobacterium Gloeobacter violaceus contains segregated bioenergetic domains. — Plant Cell 23: 2379–2390, 2011.PubMedCrossRefGoogle Scholar
  242. Ristic, Z., Bukovnik, U., Momčilović, I. et al.: Heat-induced accumulation of chloroplast protein synthesis elongation factor, EF-Tu, in winter wheat. — J. Plant Physiol. 165: 192–202, 2008.PubMedCrossRefGoogle Scholar
  243. Robinson, S.P., Downton, W.J.S., Millhouse, J.A.: Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach. — Plant Physiol. 73: 238–242, 1983.PubMedCrossRefGoogle Scholar
  244. Rogers, M.E., Noble, C.L.: Variation in growth and ion accumulation between two selected populations of Trifolium repens L. differing in salt tolerance. — Plant Soil 146: 131–136, 1992.CrossRefGoogle Scholar
  245. Roháček, K.: Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. — Photosynthetica 40: 13–29, 2002.CrossRefGoogle Scholar
  246. Rokka, A., Aro, E.M., Herrmann, R.G. et al.: Dephosphorylation of photosystem II reaction center proteins in plant photosynthetic membranes as an immediate response to abrupt elevation of temperature. — Plant Physiol. 123: 1525–1536, 2000.PubMedCrossRefGoogle Scholar
  247. Romero, L., Belakbir, A., Ragala, L., Ruiz, J.M.: Response of plant yield and leaf pigments to saline conditions: effectiveness of different rootstocks in melon plants (Cucumis melo L.). — Soil Sci. Plant Nutr. 43: 855–862, 1997.CrossRefGoogle Scholar
  248. Ruan, C., Shao, H., da Silva, J.A.T.: A critical review on the improvement of photosynthetic carbon assimilation in C3 plants using genetic engineering. — Crit. Rev. Biotechnol. 32: 1–21, 2012.PubMedCrossRefGoogle Scholar
  249. Ruban, A.V., Horton, P.: Regulation of non-photochemical quenching of chlorophyll fluorescence in plants. — Aust. J. Plant Physiol. 22: 221–230, 1995.CrossRefGoogle Scholar
  250. Ruban, A.V., Pascal, A.A., Robert, B., Horton, P.: Activation of zeaxanthin is an obligatory event in the regulation of photosynthetic light harvesting. — J. Biol. Chem. 277: 7785–7789, 2002.PubMedCrossRefGoogle Scholar
  251. Sabir, P., Ashraf, M., Hussain, M., Jamil, A.: Relationship of photosynthetic pigments and water relations with salt tolerance of proso millet (Panicum miliaceum L.) accessions. — Pak. J. Bot. 41: 2957–2964, 2009.Google Scholar
  252. Sade, N., Gebretsadik, M., Seligmann, R. et al.: The role of tobacco aquaporin in improving water use efficiency, hydraulic conductivity and yield production under salt stress. — Plant Physiol. 152: 245–254, 2010.PubMedCrossRefGoogle Scholar
  253. Sage, R.F., Zhu, X.L.: Exploiting the engine of C4 photosynthesis. — J. Exp. Bot. 62: 2989–3000, 2011.PubMedCrossRefGoogle Scholar
  254. Saibo, N.J.M., Lourenço, T., Oliveira, M.M.: Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. — Ann. Bot. 103: 609–623, 2009.PubMedCrossRefGoogle Scholar
  255. Sairam, R.K., Rao, V.K., Srivastava, G.C.: Differential response of wheat genotype to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. — Plant Sci. 163: 1037–1046, 2002.CrossRefGoogle Scholar
  256. Sakamoto, A., Murata, N.: The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. — Plant Cell Environ. 25: 163–171, 2002.PubMedCrossRefGoogle Scholar
  257. Saleem, A., Ashraf, M., Akram, N.A.: Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). — J. Agron. Crop Sci. 197: 202–213, 2011.CrossRefGoogle Scholar
  258. Salvucci, M.E., Crafts-Brandner, S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of rubisco activase in plants from contrasting thermal environments. — Plant Physiol. 134: 1460–1470, 2004.PubMedCrossRefGoogle Scholar
  259. Santos, C., Azevedo H., Caldeira, G.: In situ and in vitro senescence induced by KCI stress: nutritional imbalance, lipid peroxidatin and antioxidant metabolism. — J. Exp. Bot. 52: 351–360, 2001.PubMedCrossRefGoogle Scholar
  260. Santos, C., Caldeira, G.: Comparative responses of Helianthus annuus plants and calli exposed to NaCl: I. Growth rate and osmotic regulation in intact plants and calli. — J. Plant Physiol. 155: 769–777, 1999.CrossRefGoogle Scholar
  261. Santos, C.V.: Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. — Sci. Hort. 103: 93–99, 2004.CrossRefGoogle Scholar
  262. Saravanavel, R., Ranganathan, R., Anantharaman, P.: Effect of sodium chloride on photosynthetic pigments and photosynthetic characteristics of Avicennia officinalis seedlings. — Recent Res. Sci. Technol. 3: 177–180, 2011.Google Scholar
  263. Sausen, T.L., Rosa, L.M.G.: Growth and carbon assimilation limitations in Ricinus communis (Euphorbiaceae) under soil water stress conditions. — Acta Bot. Bras. 24: 648–654, 2010.CrossRefGoogle Scholar
  264. Schaeffer, H.J., Forsthoefel, N.R., Cushman, J.C.: Identification of enhancer and silencer regions involved in salt-responsive expression of crassulacean acid metabolism (CAM) genes in the facultative halophyte Mesembryanthemum crystallinum. — Plant Mol. Biol. 28: 205–218, 1995.PubMedCrossRefGoogle Scholar
  265. Schrader, S.M., Wise, R.R., Wacholtz, W.F. et al.: Thylakoid membrane responses to moderately high leaf temperature in Pima cotton. — Plant Cell Environ. 27: 725–735, 2004.CrossRefGoogle Scholar
  266. Seemann, J.R., Critchley, C.: Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt sensitive species. Phaseolus vulgaris L. — Plant Physiol. 82: 555–560, 1985.CrossRefGoogle Scholar
  267. Seemann, J.R., Sharkey, T.D.: The effect of abscisic acid and other inhibitors on photosynthetic capacity and the biochemistry of CO2 assimilation. — Plant Physiol. 84: 696–700, 1982.CrossRefGoogle Scholar
  268. Shahbaz, M., Ashraf, M.: Influence of exogenous application of brassinosteroid on growth and mineral nutrients of wheat (Triticum aestivum L.) under saline conditions. — Pak. J. Bot. 39: 513–522, 2007.Google Scholar
  269. Sharkey, T.D.: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene. — Plant Cell Environ. 28: 269–277, 2005.CrossRefGoogle Scholar
  270. Sharkey, T.D., Zhang, R.: High temperature effects on electron and proton circuits of photosynthesis. — J. Integr. Plant Biol. 52: 712–722, 2010.PubMedCrossRefGoogle Scholar
  271. Shou, H., Bordallo, P., Wang, K.: Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. — J. Exp. Bot. 55: 1013–1019, 2004.PubMedCrossRefGoogle Scholar
  272. Sikuku, P.A., Netondo, G.W., Onyango, J.C., Musyimi, D.M.: Chlorophyll fluorescence, protein and chlorophyll content of three NERICA rainfed rice varieties under varying irrigation regimes. — ARPN J. Agr. Biol. Sci. 5: 19–25, 2010.Google Scholar
  273. Singh, C.R., Curtis, C., Yamamoto, Y. et al.: eIF5 is critical for the integrity of the scanning preinitiation complex and accurate control of GCN4 translation. — Mol. Cell Biol. 25: 5480–5491, 2005.PubMedCrossRefGoogle Scholar
  274. Skotnica, J., Matoušková, M., Nauš, J. et al.: Thermoluminescence and fluorescence study of changes in photosystem II photochemistry in desiccating barley leaves. — Photosynth. Res. 65: 29–40, 2000.PubMedCrossRefGoogle Scholar
  275. Smith, K.A., Ardelt, B.K., Huner, N.P.A. et al.: Identification and partial characterization of the denaturation transition of the light harvesting complex-II of spinach chloroplast membranes. — Plant Physiol. 90: 492–499, 1989.PubMedCrossRefGoogle Scholar
  276. Smith, K.A., Low, P.S.: Identification and partial characterization of the denaturation transition of the photosystem-II reaction centre of spinach chloroplast membranes. — Plant Physiol. 90: 575–581, 1989.PubMedCrossRefGoogle Scholar
  277. Sohn, S.O., Back, K.: Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids. — Biol. Plant. 51: 340–342, 2007.CrossRefGoogle Scholar
  278. Srivastava, S., Fristensky, B., Kav, N.N.V.: Constitutive expression of a PR10 protein enhances the germination of Brassica napus under saline conditions. — Plant Cell Physiol. 45: 1320–1324, 2004.PubMedCrossRefGoogle Scholar
  279. Taiz, L., Zeiger, E.: Plant Physiology. 5th Ed. Sinauer Associates, Sunderland 2010.Google Scholar
  280. Takeuchi, Y., Akagi, H., Kamasawa, N., Osumi, M., Honda, H.: Aberrant chloroplasts in transgenic rice plants expressing a high level of maize NADP-dependent malic enzyme. — Planta 211: 265–274, 2000.PubMedCrossRefGoogle Scholar
  281. Tanaka, Y., Sano, T., Tamaoki, M. et al.: Ethylene inhibits abscisic acid-induced stomatal closure in Arabidopsis. — Plant Physiol. 138: 2337–2343, 2005.PubMedCrossRefGoogle Scholar
  282. Tang, D., Qian, H., Zhao, L. et al.: Transgenic tobacco plants expressing BoRS1 gene from Brassica oleracea var. acephala show enhanced tolerance to water stress. — J. Biosci. 30: 647–655, 2005.PubMedCrossRefGoogle Scholar
  283. Tang, Y., Wen, X., Lu, Q., Yang, Z., Cheng, Z., Lu, C.: Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. — Plant Physiol. 143: 629–638, 2007.PubMedCrossRefGoogle Scholar
  284. Taub, D.: Effects of rising atmospheric concentrations of carbon dioxide on plants. — Nature Educ. Knowl. 1: 21, 2010.Google Scholar
  285. Tavakoli, H., Mohtasebi, S.S.M., Jafari, A., Galedar, M.N.: Some engineering properties of barley straw. — Appl. Eng. Agr. 25: 627–633, 2009.Google Scholar
  286. Tayefi-Nasrabadi, H., Dehghan, G., Daeihassani, B. et al.: Some biochemical properties of guaiacol peroxidases as modified by salt stress in leaves of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L.) cultivars. — Afr. J. Biotechnol. 10: 751–763, 2011.Google Scholar
  287. Teige, M., Scheikl, E., Eulgem, T., Doczi, R., Ichimura, K., Shinozaki, K., Dangl, J., Hirt, H.: The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. — Mol. Cell 15: 141–152, 2004.PubMedCrossRefGoogle Scholar
  288. Tewari, A.K., Tripathy, B.C.: Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat. — Plant Physiol. 117: 851–858, 1998.CrossRefGoogle Scholar
  289. Tewari, A.K., Tripathy, B.C.: Acclimation of chlorophyll biosynthetic reactions to temperature stress in cucumber (Cucumis sativus L.). — Planta 208: 431–437, 1999.CrossRefGoogle Scholar
  290. Thornton, M.K., Malik, N.J., Dwelle, R.B.: Relationship between leaf gas exchange characteristics and productivity of potato clones grown at different temperatures. — Amer. Potato J. 73: 63–77, 1996.CrossRefGoogle Scholar
  291. Toth, S., Nagy, V., Puthur, J.T. et al.: The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. — Plant Physiol. 156: 382–392, 2011.PubMedCrossRefGoogle Scholar
  292. Tsuchida, H., Tamai, T., Fukayama, H. et al.: High level expression of C4-specific NADP-malic enzyme in leaves and impairment of photoautotrophic growth in a C3 plant, rice. — Plant Cell Physiol. 42: 138–145, 2001.PubMedCrossRefGoogle Scholar
  293. Van Camp, W., Capiau, K., Van Montagu, M., Inzé, D., Slooten, L.: Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. — Plant Physiol. 112: 1703–1714, 1996.PubMedCrossRefGoogle Scholar
  294. Van Rensburg, L., Krüger, G.H.J., Eggenberg, P., Strasser, R.J.: Can screening criteria for drought resistance in Nicotiana tabacum L. be derived from the polyphasic rise of the chlorophyll a fluorescence transient (OJIP)? — S. Afr. J. Bot. 62: 337–341, 1996.Google Scholar
  295. Várkonyi, Z., Nagy, G., Lambrev, P. et al.: Effect of phosphorylation on the thermal and light stability of the thylakoid membranes. — Photosynth. Res. 99: 161–171, 2009.PubMedCrossRefGoogle Scholar
  296. Vaz, J., Sharma, P.K.: Relationship between xanthophy cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress. — Indian J. Exp. Bot. 49: 60–67, 2011.Google Scholar
  297. Veiga, T.A.M., Silva, S.O.C.: Inhibition of photophosphorylation and electron transport chain in thylakoids by lasiodiplodin, a natural product from Botryosphaeria rhodina. — J. Agr. Food Chem. 55: 4217–4221, 2007.CrossRefGoogle Scholar
  298. Velikova, V., Sharkey, T.D., Loreto, F.: Stabilization of thylakoid membranes in isoprene-emitting plants reduces formation of reactive oxygen species. — Plant Signal. Behav. 7: 139–141, 2012.PubMedCrossRefGoogle Scholar
  299. Vener, A.V., Rokka, A., Fulgosi, H., Andersson, B., Herrmann, R.G.: A cyclophilin regulated PP2A-like protein phosphatase in thylakoid membranes of plant chloroplasts. — Biochemistry 38: 14955–14965, 1999.PubMedCrossRefGoogle Scholar
  300. Verma, S., Mishra, S.N.: Putrescine alleviation of growth in salt stressed Brassica juncea by inducing antioxidative defense system. — J. Plant Physiol. 162: 669–677, 2005.PubMedCrossRefGoogle Scholar
  301. von Caemmerer, S., Farquhar, G.D.: Effects of partial defoliation, changes of irradiance during growth at enhanced p(CO2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L. — Planta 160: 320–329, 1984.CrossRefGoogle Scholar
  302. Walker, D.: Fluorescence. — In: Walker, D. (ed.): The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. Pp. 17–46. Oxgraphics, Univ. Sheffield, Sheffield 1987.Google Scholar
  303. Wang, D., Portis, A.R. Jr.: A novel nucleus-encoded chloroplast protein, PIFI, is involved in NAD(P) H dehydrogenase complex-mediated chlororespiratory electron transport in Arabidopsis. — Plant Physiol. 144: 1742–1752, 2007.PubMedCrossRefGoogle Scholar
  304. Wang, L.J., Fan, L., Loescher, W. et al.: Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. — BMC Plant Biol. 10: 34–44, 2010.PubMedCrossRefGoogle Scholar
  305. Wang, W-H., Yi, X-Q., Han, A-D. et al.: Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in Arabidopsis. — J. Exp. Bot. 63: 177–190, 2012.PubMedCrossRefGoogle Scholar
  306. Whitmarsh, A.J., Davis, R.J.: Regulation of transcription factor function by phosphorylation. — Cell. Mol. Life Sci. 57: 1172–1183, 2000.PubMedCrossRefGoogle Scholar
  307. Winicov, I., Seemann, J.R.: Expression of genes for photosynthesis and the relationship to salt tolerance of alfalfa (Medicago sativa) cells. — Plant Cell Physiol. 31: 1155–1161, 1990.Google Scholar
  308. Wu, Q.S., Zou, N.Y.: Adaptive responses of birch-leaved pear (Pyrus betulaefolia) seedlings to salinity stress. — Not. Bot. Hort. Agrobot. Cluj. 37: 133–138, 2009.Google Scholar
  309. Wu, X.X., Ding, H., Chen, J. et al.: Attenuation of salt-induced changes in photosynthesis by exogenous nitric oxide in tomato (Lycopersicon esculentum Mill. L.) seedlings. — Afr. J. Biotechnol. 9: 7837–7846, 2010.Google Scholar
  310. Xie, X.J., Shen, S.H.H., Li, Y.X. et al.: Effect of photosynthetic characteristic and dry matter accumulation of rice under high temperature at heading stage. — Afr. J. Agr. Res. 6: 1931–1940, 2011.Google Scholar
  311. Xu, Q.Z., Huang, B.R.: Morphological and physiological characteristics associated with heat tolerance in creeping bentgrass. — Crop Sci. 41: 127–133, 2001.CrossRefGoogle Scholar
  312. Xu, W., Zhou, Y., Chollet, R.: Identification and expression of a soybean nodule-enhanced PEP-carboxylase kinase gene (NEPpcK) that shows striking up-/down-regulation in vivo. — Plant J. 34: 441–452, 2003.PubMedCrossRefGoogle Scholar
  313. Xu, X.X., Shao, H.B., Ma, Y.Y. et al.: Biotechnological implications from abscisic acid (ABA) roles in cold stress and leaf senescence as an important signal for improving plant sustainable survival under abiotic-stressed conditions. — Crit. Rev. Biotechnol. 30: 222–230, 2010.CrossRefGoogle Scholar
  314. Xu, Z., Zhou, G.: Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. — J. Exp. Bot. 59: 3317–3325, 2008.PubMedCrossRefGoogle Scholar
  315. Xue, G.P., McIntyre, C.L., Glassop, D., Shorter, R.: Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress. — Plant Mol. Biol. 67: 197–214, 2008.PubMedCrossRefGoogle Scholar
  316. Yan, J., He, C., Wang, J. et al.: Overexpression of the Arabidopsis 14-3-3 protein GF14 in cotton leads to a “stay-green” phenotype and improves stress tolerance under moderate drought conditions. — Plant Cell Physiol. 45: 1007–1014, 2004.PubMedCrossRefGoogle Scholar
  317. Yan, K., Chen, P., Shao, H. et al.: Effects of short-term high temperature on photosynthesis and photosystem II performance in Sorghum. — J. Agron. Crop Sci. 97: 400–408, 2011.CrossRefGoogle Scholar
  318. Yanagisawa, S., Sheen, J.: Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. — Plant Cell 10: 75–89, 1998.PubMedGoogle Scholar
  319. Yang, J.Y., Zheng, W., Tian, Y. et al.: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. — Photosynthetica 49: 275–284, 2011.CrossRefGoogle Scholar
  320. Yang, X., Liang, Z., Lu, C.: Genetic engineering of the biosynthesis of glycinebetaine enhances photosynthesis against high temperature stress in transgenic tobacco plants. — Plant Physiol. 138: 2299–2309, 2005.PubMedCrossRefGoogle Scholar
  321. Yildiz, M., Terzi, H.: Small heat shock protein responses in leaf tissues of wheat cultivars with different heat susceptibility. — Biologia 63: 521–525, 2008.CrossRefGoogle Scholar
  322. Yu, H., Chena, X., Hong, Y.Y. et al.: Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. — Plant Cell 20: 1134–1151, 2008.PubMedCrossRefGoogle Scholar
  323. Zeid, I.M.: Trehalose as osmoprotectant for maize under salinity-induced stress research. — J. Agr. Biol. Sci. 5: 613–622, 2009.Google Scholar
  324. Zhang, H.X., Hodson, J.N., Williams, J.P., Blumwald, E.: Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. — Proc. Natl. Acad. Sci. USA 98: 12832–12836, 2001.PubMedCrossRefGoogle Scholar
  325. Zhang, J., Jia, W., Yang, J., Ismail, A.M.: Role of ABA in integrating plant responses to drought and salt stresses. — Field Crops Res. 97: 111–119, 2006.CrossRefGoogle Scholar
  326. Zhang, L., Zhang, Z., Gao, H. et al.: Mitochondrial alternative oxidase pathway protects plants against photoinhibition by alleviating inhibition of the repair of photodamaged PSII through preventing formation of reactive oxygen species in Rumex K-1 leaves. — Physiol. Plant. 143: 396–407, 2011.PubMedCrossRefGoogle Scholar
  327. Zhang, S., Klessig, D.F.: MAPK cascades in plant defense signaling. — Trends Plant Sci. 6: 520–527, 2001.PubMedCrossRefGoogle Scholar
  328. Zhang, X., Wollenweber, B., Jiang, D. et al.: Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP 9, a bZIP transcription factor. — J. Exp. Bot. 59: 839–848, 2008.PubMedCrossRefGoogle Scholar
  329. Zhao, J., Guo, S., Chen, S. et al.: Expression of yeast YAP1 in transgenic Arabidopsis results in increased salt tolerance. — J. Plant Biol. 52: 56–64, 2009a.CrossRefGoogle Scholar
  330. Zhao, X., Tan, H.J., Liu, B. et al.: Effect of salt stress on growth and osmotic regulation in Thellungiella and Arabidopsis callus. — Plant Cell Tiss. Organ Cult. 98: 97–103, 2009b.CrossRefGoogle Scholar
  331. Zhu, B., Xiong, A.S., Peng, R.H. et al.: Heat stress protection in Aspen sp1 transgenic Arabidopsis thaliana. — BMB Rep. 41: 382–387, 2008.PubMedCrossRefGoogle Scholar
  332. Ziaf, K., Amjad, M., Pervez, M.A. et al.: Evaluation of different growth and physiological traits as indices of salt tolerance in hot pepper (Capsicum annuum L.). — Pak. J. Bot. 41: 1797–1809, 2009.Google Scholar
  333. Zlatev, Z.: Drought-induced changes in chlorophyll fluorescence of young wheat plant. — Biotechnology 23: 437–441, 2009.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of BotanyUniversity of AgricultureFaisalabadPakistan
  2. 2.Centre for Agroecology and Food SecurityCoventry UniversityCoventryUK

Personalised recommendations