, Volume 50, Issue 4, pp 481–500 | Cite as

Modelling photosynthesis in shallow algal production ponds



Shallow ponds with rapidly photosynthesising cyanobacteria or eukaryotic algae are used for growing biotechnology feedstock and have been proposed for biofuel production but a credible model to predict the productivity of a column of phytoplankton in such ponds is lacking. Oxygen electrodes and Pulse Amplitude Modulation (PAM) fluorometer technology were used to measure gross photosynthesis (P G) vs. irradiance (E) curves (P G vs. E curves) in Chlorella (chlorophyta), Dunaliella salina (chlorophyta) and Phaeodactylum (bacillariophyta). P G vs. E curves were fitted to the waiting-in-line function [P G = (P Gmax × E/Eopt) × exp(1 — E/Eopt)]. Attenuation of incident light with depth could then be used to model P G vs. E curves to describe P G vs. depth in pond cultures of uniformly distributed planktonic algae. Respiratory data (by O2-electrode) allowed net photosynthesis (P N) of algal ponds to be modelled with depth. Photoinhibition of photosynthesis at the pond surface reduced P N of the water column. Calculated optimum depths for the algal ponds were: Phaeodactylum, 63 mm; Dunaliella, 71 mm and Chlorella, 87 mm. Irradiance at this depth is ≈ 5 to 10 μmol m−2 s−1 photosynthetic photon flux density (PPFD). This knowledge can then be used to optimise the pond depth. The total net P N [μmol(O2) m−2 s−1] were: Chlorella, ≈ 12.6 ± 0.76; Dunaliella, ≈ 6.5 ± 0.41; Phaeodactylum ≈ 6.1 ± 0.35. Snell’s and Fresnel’s laws were used to correct irradiance for reflection and refraction and thus estimate the time course of P N over the course of a day taking into account respiration during the day and at night. The optimum P N of a pond adjusted to be of optimal depth (0.1–0.5 m) should be approximately constant because increasing the cell density will proportionally reduce the optimum depth of the pond and vice versa. Net photosynthesis for an optimised pond located at the tropic of Cancer would be [in t(C) ha−1 y−1]: Chlorella, ≈ 14.1 ± 0.66; Dunaliella, ≈ 5.48 ± 0.39; Phaeodactylum, ≈ 6.58 ± 0.42 but such calculations do not take weather, such as cloud cover, and temperature, into account.

Additional key words

algal production ponds Chlorella Dunaliella electron transport rate light saturation curves Phaeodactylum photoinhibition photosynthesis photosynthesis vs. depth primary productivity pulse amplitude modulation fluorometry 





irradiance 400–700 nm photosynthetic photon flux density (PPFD)


irradiance at a pond surface


optimum irradiance


irradiance at a depth x in a pond


attenuation constant


photosynthetic photon flux density


gross photosynthesis expressed on an oxygen basis (P G = rETR/4)


net photosynthesis (P N = P G + R)




relative electron transport rate


effective quantum yield


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ai, W., Guo, S., Qin, L., Tang, Y.: Development of a groundbased space micro-algae photo-bioreactor. — Adv. Space Res. 41: 742–747, 2008.CrossRefGoogle Scholar
  2. Allen, M.M.: Methods for cyanophyceae. — In: Stein, J.R. (ed.) Handbook of Phycological Methods: Culture Methods and Growth Measurements. Pp. 127–138. Cambridge Univ. Press, Cambridge 1973.Google Scholar
  3. Antoni, D., Zverlov, V.V., Scharz, W.H.: Biofuels from microbes. — Appl. Microbiol. Biotechnol. 77: 23–35, 2007.PubMedCrossRefGoogle Scholar
  4. Belasco, W.: Algae Burgers for a Hungry World? The Rise and Fall of Chlorella Cuisine. — Technol. Cult. 38: 608–634, 1997.CrossRefGoogle Scholar
  5. Behrenfeld, M.J., Falkowski, P.G.: Photosynthetic rates derived from satellite-based chlorophyll concentration. — Limnol. Oceanogr. 42: 1–20, 1997.CrossRefGoogle Scholar
  6. Bidigare, R.R., Prezelin, B.B., Smith, R.C.: Bio-optical models and the problems of scaling. — In: Falkowski, P.G. (ed.): Primary Productivity and Biogeochemical Cycles in the Sea. Pp. 175–212. Plenum Press, New York 1992.Google Scholar
  7. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. — Planta 170: 489–504, 1987.CrossRefGoogle Scholar
  8. Borowitzka, L.J.: Commercial production of microalgae: ponds, tanks, tubes and fermenters. — J. Biotechnol. 70: 313–321, 1999.CrossRefGoogle Scholar
  9. Borowitzka, M.A.: Algal biotechnology products and processes — matching science and economics. — J. Appl. Phycol. 4: 267–279, 1992.CrossRefGoogle Scholar
  10. Borowitzka, M.A., Borowitzka, L.J.: Micro-algal Biotechnology. — Cambridge Univ. Press Publ., Cambridge 1988.Google Scholar
  11. Chisti, Y.: Biodiesel from microalgae. — Biotechnol. Adv. 25: 294–306, 2007.PubMedCrossRefGoogle Scholar
  12. Chisti, Y.: Biodiesel from microalgae beats bioethanol. — Trends Biotechnol. 26: 126–131, 2008a.PubMedCrossRefGoogle Scholar
  13. Chisti, Y.: Response to Reijnders: Do biofuels from microalgae beat biofuels from terrestrial plants? — Trends Biotechnol. 26: 351–352, 2008b.CrossRefGoogle Scholar
  14. Colinvaux, P.A.: Why Big Fierce Animals are Rare: an Ecologist’s Perspective. — Princeton Univ. Press, Princeton 1978.Google Scholar
  15. Cullen J.J., Geider, R.J., Ishizaka, J. et al.: Towards a general description of phytoplankton growth for biogeochemical models. — In: Evans, G.T., Fasham, M.J.R. (ed.): Towards a General Description of Phytoplankton Growth for Biogeochemical Models. Pp. 153–176. NATO ASl Series 1, Vol. 10. Springer, Berlin 1993.Google Scholar
  16. Dauta, A., Devaux, J., Piquemal, F., Boumnich, L.: Growth rate of four freshwater algae in relation to light and temperature. — Hydrobiologia 207: 221–226, 1990.CrossRefGoogle Scholar
  17. Davidson, A.T.: Effects of Ultraviolet Radiation on Microalgal Growth, Survival and Production. — In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications Vol. II. Pp. 715–767. Science Publishers, Enfield 2006.Google Scholar
  18. Duarte, P.: Photosynthesis-Irradiance Relationships in Marine Algae. — In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications. Vol. II. Pp. 639–670. Science Publishers, Enfield 2006.Google Scholar
  19. Eilers, P.H.C., Peeters, J.C.H.: A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. — Ecol. Model. 42: 199–215, 1988.CrossRefGoogle Scholar
  20. Engqvist, A., Sjöberg, S.: An analytical integration method of computing diurnal primary production from Steele’s light response curve. — Ecol. Model. 8: 219–232, 1980.CrossRefGoogle Scholar
  21. Falkowski, P.G.: Light-shade adaptation and assimilation numbers. — Plankton Res. 3: 203–216, 1981.CrossRefGoogle Scholar
  22. Falkowski, P.G., Greene, R., Kolber, Z.: Light utilization and photoinhibition of photosynthesis in marine phytoplankton. — In: Baker, N.R., Bowyer, J.R. (ed.): Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 407–432. BIOS Scietific Publ., Oxford 1994.Google Scholar
  23. Falkowski, P.G., Raven, J.A.: Aquatic photosynthesis. 2nd E.n. Princeton Univ. Press, Princeton 2007.Google Scholar
  24. Fawley, M.W.: Effects of light intensity and temperature interactions on growth characteristics of Phaeodactylum tricornutum (Bacillariophyceae). — J. Phycol. 20: 67–72, 1984.CrossRefGoogle Scholar
  25. Garcia, H.E., Gordon, L.: Oxygen Solubility in Seawater: Better Fitting Equations. — Limnol. Oceanogr. 37: 1307–1312, 1992.CrossRefGoogle Scholar
  26. Genty, B., Briantais, J.M., Baker, N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. — Biochim. Biophys. Acta 990: 87–92, 1989.CrossRefGoogle Scholar
  27. Giordano, M., Beardall, J.: Impact of environmental conditions on photosynthesis, growth and carbon allocation strategies of hypersaline species of Dunaliella. — Global Nest J. 11: 79–85, 2009.Google Scholar
  28. Gloag, R.S., Ritchie, R.J., Chen, M., Larkum, A.W.D., Quinnell, R.G.: Chromatic photoacclimation, photosynthetic electron transport and oxygen evolution in the Chlorophyll dcontaining oxyphotobacterium Acaryochloris marina Miyashita. — Biochim. Biophys. Acta-Bioenergetics 1767: 127–135, 2007.CrossRefGoogle Scholar
  29. Grobbelaar, J.U.: Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? — J. Appl. Phycol. 19: 591–598, 2007.CrossRefGoogle Scholar
  30. Grobbelaar, J.U., Soeder, C.J., Stengel, E.: Modelling Algal Productivity in Large Outdoor Cultures and Waste Treatment Systems. — Biomass 21: 297–314, 1990.CrossRefGoogle Scholar
  31. Huntley, M.E., Redalje, D.G.: CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. — Mitig. Adapt. Strat. GL 12: 573–608, 2007.CrossRefGoogle Scholar
  32. Jassby, A.D., Platt T.: Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. — Limnol. Oceanogr. 21: 540–547, 1976.CrossRefGoogle Scholar
  33. Johnson, M.L., Faunt, L.M.: Parameter estimation by least squares methods. — Methods Enzymol. 210: 1–37, 1992.PubMedCrossRefGoogle Scholar
  34. Kroon, B.M.A., Ketelaars, H.A.M., Fallowfield, H.J., Mur, L.R.: Modelling microalgal productivity in a High Rate Algal Pond based on wavelength dependent optical properties. — J. Appl. Phycol. 1: 247–256, 1989.CrossRefGoogle Scholar
  35. Larkum, A.W.D.: Limitations and prospects of natural photosynthesis for bioenergy production. — Curr. Opin. Biotechnol. 21: 271–276, 2010.PubMedCrossRefGoogle Scholar
  36. Larkum, A.W.D., Douglas, S.E., Raven, J.A. (ed.): Photosynthesis in Algae. — Kluwer Academic, Dordrecht 2003.CrossRefGoogle Scholar
  37. Larkum, T., Howe, C.J.: Molecular Aspects of Light-harvesting Processes in Algae. — Adv. Bot. Res. 27: 257–330, 1997.CrossRefGoogle Scholar
  38. Lorentzen, C.J.: The Penetration of light in the sea. — In: Cushing, D.H., Walsh, J.J. (ed.): The Ecology of the Seas. Pp. 173–185. Blackwell Scientific, Oxford 1976.Google Scholar
  39. Lorrain, P., Corson, D.R., Lorrain, F.: Plane electromagnetic waves III.- In: Lorrain, P., Corson, D.R., Lorrain, F.: Electromagnetic Fields and Waves. Pp. 557–561. Freeman, New York 1988.Google Scholar
  40. MacIntyre, H.L., Kana, T.M., Anning, T., Geider, R.J.: Photoacclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. — J. Phycol. 38: 17–38, 2002.CrossRefGoogle Scholar
  41. McBride, G.B.: Calculation of Daily Photosynthesis by Means of Five Photosynthesis-Light Equations. — Limnol. Oceanogr. 37: 1796–1808, 1992.CrossRefGoogle Scholar
  42. Melis, A.: Spectroscopic methods in photosynthesis: photosystem stoichiometry and chlorophyll antenna size. — Philos. Trans. Roy. Soc. London Ser. B 323: 397–409, 1989.CrossRefGoogle Scholar
  43. Miller, C.B.: Biological Oceanography. — Blackwell Publ., Malden 2006.Google Scholar
  44. Moheimani, N.R., Borowitzka, M.A.: The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. — J. Appl. Phycol. 18: 703–712, 2006a.CrossRefGoogle Scholar
  45. Moheimani, N.R., Borowitzka, M.A.: Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. — Biotechnol. Bioeng. 1: 27–36, 2006b.Google Scholar
  46. Morel, A.: Light and marine photosynthesis: a spectral model with geochemical and climatological implications. — Prog. Oceanogr. 26: 263–306, 1991.CrossRefGoogle Scholar
  47. Nishri, A., Ben Yarkov, S.: Solubility of oxygen in the Dead Sea. — Hydrobiologia 197: 99–104, 1990.CrossRefGoogle Scholar
  48. Oswald, W.J.: Productivity of algae in sewage disposal. — Sol. Energy 15: 107–117, 1973.CrossRefGoogle Scholar
  49. Platt T., Sathyendranath S.: Oceanic primary production: estimation by remote sensing at local and regional scales. — Science 241: 1613–1620, 1988.PubMedCrossRefGoogle Scholar
  50. Ralph, P.J., Gademann, R.: Rapid light curves: A powerful tool to assess photosynthetic activity. — Aquat. Bot. 82: 222–237, 2005.CrossRefGoogle Scholar
  51. Richmond, A., Zou, N.: Efficient utilisation of high photon irradiance for mass production of photoautotrophic microorganisms. — J. Appl. Phycol. 11: 123–127, 1999.CrossRefGoogle Scholar
  52. Ritchie, R.J.: Consistent sets of spectrophotometric equations for acetone, methanol and ethanol solvents. — Photosynth. Res. 89: 27–41, 2006.PubMedCrossRefGoogle Scholar
  53. Ritchie, R.J.: Universal chlorophyll equations for estimating chlorophylls a, b, c and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol or ethanol solvents. — Photosynthetica 46: 115–126, 2008a.CrossRefGoogle Scholar
  54. Ritchie, R.J.: Fitting light saturation curves measured using PAM fluorometry. — Photosynth. Res. 96: 201–215, 2008b.PubMedCrossRefGoogle Scholar
  55. Ritchie, R.J.: Modelling Photosynthetically Active Radiation and Maximum Potential Gross Photosynthesis. — Photosynthetica 48: 596–609, 2010.CrossRefGoogle Scholar
  56. Ritchie, R.J.: Photosynthesis in the Blue Water Lily (Nymphaea caerulea Saligny) using PAM Fluorometry. — Int. J. Plant Sci. 173: 124–136, 2012.CrossRefGoogle Scholar
  57. Ritchie, R.J., Bunthawin, S.: The use of PAM (Pulse Amplitude Modulation) fluorometry to measure photosynthesis in a CAM orchid, Dendrobium spp. (D. ‘Viravuth’ Pink). — Int. J. Plant Sci. 171: 575–585, 2010a.CrossRefGoogle Scholar
  58. Ritchie, R.J., Bunthawin, S.: The Use of PAM (Pulse Amplitude Modulation) Fluorometry to Measure Photosynthesis in Pineapple (Ananas comosus [L.] Merr). — Trop. Plant Biol. 3: 193–203, 2010b.CrossRefGoogle Scholar
  59. Robertson, M.J., Wood, A.W., Muchow, R.C.: Growth of sugarcane under high input conditions in tropical Australia. I. Radiation use, biomass accumulation and partitioning. — Field Crops Res. 48: 11–25, 1996.CrossRefGoogle Scholar
  60. Sheehan, J., Dunahay, T., Benemann, J., Roessler, P.: A look back at the US Department of Energy’s Aquatic Species Program: Biodiesel from Algae. NREL/TP-580-24190. NREL, Golden, Colorado, 1998. (Available at [Accessed 03 January 2009].)CrossRefGoogle Scholar
  61. Sherwood, J.E., Stagnitti, F., Kokkinn, M.J., Williams, W.D.: Dissolved oxygen concentrations in hypersaline waters. — Limnol. Oceanogr. 36: 235–250, 1991.CrossRefGoogle Scholar
  62. Shimamatsu, H.: A pond for edible Spirulina production and its hydraulic studies. — Hydrobiologia 151/152: 83–89, 1987.CrossRefGoogle Scholar
  63. Shimamatsu, H.: Mass production of Spirulina, an edible microalga. — Hydrobiologia 512: 39–44, 2004.CrossRefGoogle Scholar
  64. SMARTS: Simple Model of Atmospheric Radiative Transfer of Sunshine (SMARTS): [Accessed 23/11/2009].
  65. Smayda, T.J.: Autecology of bloom-forming microalgae: extrapolation to field populations and the refield-braarud debate revisited. — In: Rao, D.V.S. (ed.): Algal Cultures Analogues of Blooms and Applications. Vol. I, Pp. 215–270. Science Publishers, Enfield 2006.Google Scholar
  66. Sosik, H.M., Mitchell, B.G.: Effects of temperature on growth, light absorption, and quantum yield in Dunaliella tertiolecta (Chlorophyceae). — J. Phycol. 30: 833–840, 1994.CrossRefGoogle Scholar
  67. Steele, J.H.: Environmental control of photosynthesis in the sea. — Limnol. Oceanogr. 7: 137–150, 1962.CrossRefGoogle Scholar
  68. Stemke, J.A., Santiago, L.S.: Consequences of light absorptance in calculating electron transport rate of desert and succulent plants. — Photosynthetica 49: 195–200, 2011.CrossRefGoogle Scholar
  69. Sukenik, A., Levy, R.S., Levy, Y., Falkowski, P.G., Dubinsky, Z.: Optimizing algal biomass production in an outdoor pond: a simulation model. — J. Appl. Phycol. 3: 191–201, 1991.CrossRefGoogle Scholar
  70. Talling, J.F, Wood, R.B, Prosser, M.V., Baxter, R.M.: The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian soda lakes. — Freshwater Biol. 3: 53–76, 1973.CrossRefGoogle Scholar
  71. Walker, D.A.: The Use of the Oxygen Electrode and Fluorescence Probes in Simple Measurements of Photosynthesis. — Oxygraphics Publ., Sheffield 1990.Google Scholar
  72. Walker, D.A.: Biofuels, facts, fantasy, and feasibility. — J. Appl. Phycol. 21: 509–517, 2009.CrossRefGoogle Scholar
  73. Walker, D.A.: Biofuels — for better or worse? — Ann. Appl. Biol. 156: 319–327, 2010.CrossRefGoogle Scholar
  74. Waltz, E.: Biotechs green gold? — Nat. Biotechnol. 27: 15–18, 2009.PubMedCrossRefGoogle Scholar
  75. Warburg, O.: [On the rate of photochemical carbonic acid decomposition in living cells.] — Biochem. Z. 100: 232–262, 1919. [In German.]Google Scholar
  76. Weissman, J.C., Goebel, R.P., Benemann, J.R.: Photobioreactor design: mixing, carbon utilization, and Oxygen Accumulation. — Biotechnol. Bioeng. 31: 336–344, 1988.PubMedCrossRefGoogle Scholar
  77. Westlake, D.F.: Comparisons of plant productvity. — Biol. Rev. 38: 385–425, 1963.CrossRefGoogle Scholar
  78. Weyer, K.M., Bush, D.R., Darzins, A., Willson, B.D.: Theoretical maximum algal oil production. — Bioenerg. Res. 3: 204–213, 2010.CrossRefGoogle Scholar
  79. White, A.J., Critchley, C.: Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. — Photosynth. Res. 59: 63–72, 1999.CrossRefGoogle Scholar
  80. Zmora, O., Richmond, A.: Microalgae for aquaculture, microalgae production for aquaculture. — In: Richmond, A. (ed.): Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Pp. 365–79. Blackwell Scientific, Oxford 2004.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Faculty of Technology and EnvironmentPrince of Songkla University-PhuketKathu, PhuketThailand
  2. 2.Climate Change ClusterUniversity of TechnologySydneyAustralia

Personalised recommendations