, Volume 50, Issue 3, pp 411–421 | Cite as

Investigation of the ameliorating effects of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato as rootstocks on alkali stress in tomato plants

  • Y. Mohsenian
  • H. R. RoostaEmail author
  • H. R. Karimi
  • M. Esmaeilizade


Among the most important quality parameters of irrigation water used for greenhouse crops, alkalinity of water is considered critical due to its impact on soil or growing medium solution pH. In this study, plant growth, Fe content, photosynthetic pigment content, maximal quantum yield of PSII photochemistry (Fv/Fm), performance index (PI), leaf relative water content (LRWC), and soluble sugars concentration were investigated in nongrafted and grafted tomato (Lycopersicon esculentum Mill. cv. Red stone) plants onto five rootstocks of eggplant (Solanum melongena cv. Long purple), datura (Datura patula), orange nightshade (Solanum luteum Mill.), local Iranian tobacco (Nicotiana tabacum), and field tomato (Lycopersicon esculentum Mill. cv. Cal.jn3), exposed to 0, 5, and 10 mM NaHCO3 concentrations, to determine whether grafting could improve alkalinity tolerance of tomato. Significant depression of leaf area, leaf and stem dry mass, shoot and root Fe content and LRWC under high NaHCO3 level was observed in both grafted and ungrafted plants. The highest reduction in the shoot Fe content was observed at 10 mM sodium bicarbonate in control plants (greenhouse tomato). Moreover, at high HCO3 level, the highest percentage of LRWC reduction was also recorded in ungrafted plants. Values of Fv/Fm and PI decreased significantly at 5 and 10 mM NaHCO3 irrespective of rootstock type. The present study revealed that soluble sugars content, photosynthetic pigments content, Fv/Fm and PI values in plants grafted onto datura rootstock were higher than those in nongrafted and rest of the grafted plants. Thus, the use of datura rootstock could provide a useful tool to improve alkalinity tolerance of tomato plants under NaHCO3 stress.

Additional key words

chlorophyll fluorescence grafting Lycopersicon esculentum NaHCO3 performance index 







dry mass


maximal quantum yield of PSII photochemistry


fresh mass


leaf relative water content


performance index




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmad, P., Sharma, S.: Salt stress and phyto-biochemical responses of plants. — Plant Soil Environ. 54: 89–99, 2008.Google Scholar
  2. Álvarez-Fernández, A., García-Marco, S, Lucena, J.J.: Evaluation of synthetic iron(III)-chelates (EDDHA/Fe3+, EDDHMA/Fe3+ and the novel EDDHSA/Fe3+) to correct iron chlorosis. — Eur. J. Agron. 22: 119–130, 2005.CrossRefGoogle Scholar
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. — Plant Physiol. 24: 1–15, 1949.PubMedCrossRefGoogle Scholar
  4. Bailey, D.A., Hammer, P.A.: Growth and nutritional status of petunia and tomato seedlings with acidified water. — HortSci. 21: 423–425, 1986.Google Scholar
  5. Balaguer, L., Pugnaire, F.I., Martinez-Ferri, E., Armas, C., Valladares, F., Manrique, E.: Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L. — Plant Soil. 240: 343–352, 2002.CrossRefGoogle Scholar
  6. Bertamini, M., Nedunchezhian, N., Borghi, B.: Effect of iron deficiency induced changes on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase, and photosystem activities in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. — Photosynthetica 39: 59–65, 2001.CrossRefGoogle Scholar
  7. Bertoni, G.M., Pissaloux, A., Morad, P., Sayag, D.R.: Bicarbonate-pH relationship with iron chlorosis in white lupine. — J. Plant Nutr. 15: 1509–1518, 1992.CrossRefGoogle Scholar
  8. Bloom, P.R.: Soil pH and pH buffering. — In: Sumner, M. (ed.): Handbook of Soil Science. Pp. B–333–352. CRC Press, Boca Raton 2000.Google Scholar
  9. Campbell, S.A., Nishio, J.N.: Iron deficiency studies of sugar beet using an improved sodium bicarbonate-buffered hydroponic growth system. — J. Plant Nutr. 23: 741–757, 2000.CrossRefGoogle Scholar
  10. Carter, C.T., Grieve, C.M., Poss, J.A.: Salinity effects on emergence, survival, and ion accumulation of Limonium perezii. — J. Plant Nutr. 28: 1243–1257, 2005.CrossRefGoogle Scholar
  11. Chen, S.F., Zhu, Y.L., Liu, Y.L., Li, S.J.: [Effects of NaCl stress on activities of protective enzymes, contents of osmotic adjustment substances and photosynthetic characteristics in grafted tomato seedlings.] — Acta Hort. Sin. 32: 609–613, 2005. [In Chin.]Google Scholar
  12. Chen, W., Feng, C., Guo, W., Shi, D., Yang C.: Comparative effects of osmotic-, salt- and alkali stress on growth, photosynthesis, and osmotic adjustment of cotton plants. — Photosynthetica 49: 417–425, 2011.CrossRefGoogle Scholar
  13. Clark, A.J., Landolt, W., Bucher, J.B., Strasser, R.J.: Beech (Fagus sylvatica) response to ozone exposure assessed with a chlorophyll a fluorescence performance index. — Environ. Pollut. 109: 501–507, 2000.PubMedCrossRefGoogle Scholar
  14. Claussen, W.: Proline as a measure of stress in tomato plants. — Plant Sci. 168: 241–248, 2005.CrossRefGoogle Scholar
  15. Colla, G., Rouphael, Y., Cardarelli, M., Salerno, A., Rea, E.: The effectiveness of grafting to improve alkalinity tolerance in watermelon. — Environ. Exp. Bot. 68: 283–291, 2010a.CrossRefGoogle Scholar
  16. Colla, G., Rouphael, Y., Leonardi, C., Bie, Z.: Role of grafting in vegetable crops grown under saline conditions. — SciHort. 127: 147–155, 2010b.Google Scholar
  17. Dasgan, H.Y., Ozturk, L., Abak, K., Cakmak, I.: Activities of iron-containing enzymes in leaves of two tomato genotypes differing in their resistance to Fe chlorosis. — J. Plant Nutr. 26: 1997–2007, 2003.CrossRefGoogle Scholar
  18. De Ell, J.R, Toivonen, P.M.A.: Use of chlorophyll fluorescence in postharvest quality assessments of fruits and vegetables. — In: De Ell, J.R., Tiovonen P.M.A. (ed.): Practical Applications of Chlorophyll Fluorescence in Plant Biology. Pp. 201–242. Kluwer Acad. Publ., Boston 2003.CrossRefGoogle Scholar
  19. Demmig-Adams, B., Adams, W.W.,III: Carotenoid composition in sun and shade leaves of plants with different life forms. — Plant Cell Environ. 15: 411–419, 1992.CrossRefGoogle Scholar
  20. Deng, C.N., Zhang, G.X., Pan, X.L., Zhao, K.Y.: Chlorophyll fluorescence and gas exchange responses of maize seedlings to saline-alkaline stress. — Bulg. J. Agr. Sci. 16: 49–58, 2010.Google Scholar
  21. Fernandez-Garcia, N., Martinez, V., Cedra, A., Garvajal, M.: Fruit quality of grafted tomato plants grown under saline conditions. — J. Hort. Sci. Biotech. 79: 995–1001, 2004.Google Scholar
  22. Gogorcena, Y., Abadía, J., Abadía, A.: A new technique for screening iron-efficient genotypes in peach rootstocks: Elicitation of root ferric chelate reductase by manipulation of external iron concentrations. — J. Plant Nutr. 27: 1701–1715, 2004.CrossRefGoogle Scholar
  23. Hoagland, D.R., Arnon, D.I. The water culture method for growing plants without soil. — Circular 347, California Agr. Exp. Station, Univ. California, Berkeley 1950.Google Scholar
  24. Huang, Y., Bie, Z.L., Liu, Z.X., Zhen, A., Wang, W.J.: Protective role of proline against salt stress is partially related to the improvement of water status and peroxidase enzyme activity in cucumber. — Soil Sci. Plant Nutr. 55: 698–704. 2009b.CrossRefGoogle Scholar
  25. Huang, Y., Zhu, J., Zhen, A., Chen, L., Bie, Z.L.: Organic and inorganic solutes accumulation in the leaves and roots of grafted and ungrafted cucumber plants in response to NaCl stress. — J. Food Agr. Environ. 7: 703–708, 2009a.Google Scholar
  26. Hulsebosch, R.J., Hoff, A.J., Shuvalov, V.A.: Influence of KF, DCMU and remove of Ca2+ on the light-spin EPR signal of the cytochrome b-559 iron (III) ligated by OH-in chloroplasts. — Biochim. Biophys. Acta 1277: 103–106, 1996.CrossRefGoogle Scholar
  27. Irigoyen, J.J., Emerich, D.W., Sanchez-Diaz, M.: Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. — Physiol. Plant. 84: 55–60, 1992.CrossRefGoogle Scholar
  28. Jain, D, Chattopadhyay, D.: Analysis of gene expression in response to water deficit of chickpea (Cicer arietinum L.) varieties differing in drought tolerance. — BMC Plant Biol. 10: e24. doi:10.1186/1471-2229-10-24, 2010.CrossRefGoogle Scholar
  29. James, R.A., Munns, R., von Caemmerer, S., Trejo, C., Miller, C., Condou, T.(A.G.): Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl in saltaffected barley and durum wheat. — Plant Cell Environ. 29: 2185–2197, 2006.PubMedCrossRefGoogle Scholar
  30. Jiang, C.D., Shi, L., Gao, H.Y., Schansker, G., Tóth, S.Z., Strasser, R.J.: Development of photosystems 2 and 1 during leaf growth in grapevine seedlings probed by chlorophyll a fluorescence transient and 820 nm transmission in vivo. — Photosynthetica 44: 454–463, 2006.CrossRefGoogle Scholar
  31. Katerji, N., van Hoorn, J.W., Hamdy, A., Mastrorilli, M.: Osmotic adjustment of sugarbeets in response to soil salinity and its influence on stomatal conductance, growth and yield. — Agr. Water Manage. 34: 57–69, 1997.CrossRefGoogle Scholar
  32. Klamkowski, K., Borkowska, B., Treder, W., Tryngiel-GaĆ, A., Krzewińska, D.: Effect of mycorrhizal inoculation on photosynthetic activity and vegetative growth of cranberry plants grown under different water regimes. — Acta Hort. 838: 109–113, 2009.Google Scholar
  33. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: The basics. — Ann. Review Plant Physiol. Plant. Mol. Biol. 42: 313–349, 1991.CrossRefGoogle Scholar
  34. Marschner, H.: Mineral Nutrition of Higher Plants. IIthEd. — Acad. Press, London 1995.Google Scholar
  35. Miller, G.W.; Denney, A., Pushnik, J., Ming-Ho, Y.: The formation of delta aminolevulinate a precursor of chlorophyll in barley and the role of iron. — J. Plant Nutr. 5: 289–300, 1982.CrossRefGoogle Scholar
  36. Morales, F., Abadía, A., Abadía, J.: Photosynthesis, quenching of chlorophyll fluorescence and thermal energy dissipation in iron-deficient sugar beet leaves. — Aust. J. Plant Physiol. 25: 403–412, 1998.CrossRefGoogle Scholar
  37. Morales, F., Abadía, A., Abadía, J.: Chlorophyll fluorescence and photon yield of oxygen evolution in iron-deficient sugar beet (Beta vulgaris L.) leaves. — Plant Physiol. 97: 886–893, 1991.PubMedCrossRefGoogle Scholar
  38. Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.PubMedCrossRefGoogle Scholar
  39. Nedunchezhian, N., Morales, F., Abadía, A., Abadía, J.: Decline in photosynthetic electron transport activity and changes in thylakoid protein pattern in field grown iron deficient peach (Prunus persica L.). — Plant Sci. 129: 29–38, 1997.CrossRefGoogle Scholar
  40. Parida A.K., Das, B.: Salt tolerance and salinity effects on plants. — Ecotoxicol. Environ. Safety 60: 324–349, 2005.PubMedCrossRefGoogle Scholar
  41. Pearce, R.C., Li, Y., Bush, L.P.: Calcium and bicarbonate effects on the growth and nutrient uptake of burley tobacco seedlings: float system. — J. Plant Nutr. 22: 1079–1090, 1999.CrossRefGoogle Scholar
  42. Pestana, M., Varennes, D.A., Abadía, J., Faria, E.A.: Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution, — Sci. Hort. 104: 25–36, 2005.CrossRefGoogle Scholar
  43. Petersen, F.H.: Water testing and interpretation. — In: Reed, D.W. (ed.).: Water, Media and Nutrition. Pp. 31–49. Ball Publ., Batavia 1996.Google Scholar
  44. Qun, H.Z., Ru, T.H., Xiu, L.H, Xing, H.C., Bin, Z.Z., Song, W.H.: Arbuscular mycorrhizal alleviated ion toxicity, oxidative damage and enhanced osmotic adjustment in tomato subjected to NaCl stress. — Amer.-Eurasian J. Agric. Environ. Sci. 7: 676–683, 2010.Google Scholar
  45. Redondo-Gómez, S., Mateos-Naranjo, E., Davy, A.J., Fernandez-Muñoz, F., Castellanos, E.M., Luque, T., Figueroa, M.E.: Growth and photosynthetic responses to salinity of the salt-marsh shrub Atriplex portulacoides. — Ann. Bot. 100: 555–563, 2007.PubMedCrossRefGoogle Scholar
  46. Rideout, J.W., Gooden, D.T., and Martin, S.B.: Corrective measures for growing tobacco seedlings using the float system with water high in bicarbonate. — Tobacco Sci. 39: 130–136, 1995.Google Scholar
  47. Römheld, V., Marschner, H.: Mobilization of iron in the rhizosphere of different plant species. — Adv. J. Plant Nutr. 2: 155–204, 1986.Google Scholar
  48. Roosta, H.R.: Interaction between water alkalinity and nutrient solution pH on the vegetative growth, chlorophyll fluorescence and leaf Mg, Fe, Mn and Zn concentrations in lettuce. — J. Plant Nutr. 34: 717–731, 2011.CrossRefGoogle Scholar
  49. Savvas, D., Colla, G., Rouphael, Y., Schwarz, D.: Amelioration of heavy metaland nutrient stress in fruit vegetables by grafting. — Sci. Hort. 127: 156–161, 2010.CrossRefGoogle Scholar
  50. Schwarz, D., Rouphael, Y., Colla, G., Venema, J.H.: Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. — Sci. Hort. 127: 162–171. 2010.CrossRefGoogle Scholar
  51. Spiller, S., Terry, N.: Limiting factors in photosynthesis. II. Iron stress diminishes photochemical capacity by reducing the number of photosynthetic units. — Plant Physiol. 65: 121–125, 1980.PubMedCrossRefGoogle Scholar
  52. Strasser, R.J., Srivastava, A., Tsimilli-Michael, M.: The fluorescence transient as a tool to characterize and screen photosynthetic samples. — In: Yunus, M. (ed.): Probing Photosynthesis: Mechanisms, Regulation and Adaptation. Pp.445–483. Taylor & Francis, London, 2000.Google Scholar
  53. Strauss, A.J., Krüger, G.H.J., Strasser, R.J., van Heerden, P.D.R.: Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient O-J-I-P. — Environ. Exp. Bot. 56: 147–157, 2006.CrossRefGoogle Scholar
  54. Sultana, N., Ikeda, T., Itoh, R.: Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. — Environ. Exp. Bot. 42: 211–220, 1999.CrossRefGoogle Scholar
  55. Szaniawski, R.K.: Plant stress and homeostasis. — Plant Physiol. Biochem. 25: 63–72, 1987.Google Scholar
  56. Terry, N.: Limiting factors in photosynthesis. Use of iron stress to control photochemical capacity in vivo. — Plant Physiol. 65: 114–20, 1980.PubMedCrossRefGoogle Scholar
  57. Valdez-Aguilar, L.A.: Effect of alkalinity in irrigation water on selected greenhouse ornamental plants. — PhD Dissertation, College Station, Texas A&M Univ, Texas 2004.Google Scholar
  58. Valdez-Aguilar, L.A., Reed, D.W.: Growth and nutrition of young bean plants under high alkalinity as affected by mixtures of ammonium, potassium, and sodium. — J. Plant Nutr. 33: 1472–1488, 2010.CrossRefGoogle Scholar
  59. Valdez-Aguilar, L.A., Reed, D.W.: Response of selected greenhouse ornamental plants to alkalinity in irrigation water. — J. Plant Nutr. 30: 441–452, 2007.CrossRefGoogle Scholar
  60. Wang, H., Ahan, J., Wu Z., Shi D., Liu B., Yang, C.: Alteration of nitrogen metabolism in rice variety ‘Nipponbare’ induced by alkali stress. — Plant Soil 355: 131–147, 2012.CrossRefGoogle Scholar
  61. Weatherley, P.E.: Studies in water relations of cotton plants. I. The field measurement of water deficits in leaves. — New Phytol. 49: 81–97, 1950.CrossRefGoogle Scholar
  62. Xiong, Z.T., Li, Y.H., Xu, B.: Nutrition influence on copper accumulation by Brassica pekinensis Rupr. — J. Ecotoxicol. Environ. Safety 53: 200–205, 2002.CrossRefGoogle Scholar
  63. Yang, C.W., Chong, J.N., Li, C.Y., Kim, C.M., Shi, D.C., Wang, D.L.: Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions. — Plant Soil 294: 263–276, 2007.CrossRefGoogle Scholar
  64. Yang, C.W., Shi, D.C., Wang, D.L.: Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.). — Plant Growth Regul. 56: 179–190, 2008b.CrossRefGoogle Scholar
  65. Yang, C.W., Wang, P., Li, C.Y., Shi, D.C., Wang, D.L.: Comparison of effects of salt and alkali stresses on the growth and photosynthesis of wheat. — Photosynthetica 46: 107–114, 2008a.CrossRefGoogle Scholar
  66. Yang, C.W., Xu, H.H., Wang, L.L., Liu, J., Shi, D.C., Wang, D.L.: Comparative effects of salt-stress and alkali-stress on the growth, photosynthesis, solute accumulation, and ion balance of barley plants. — Photosynthetica 47: 79–86, 2009b.CrossRefGoogle Scholar
  67. Yang, C.W., Zhang, M. L., Liu, J., Shi, D. C., Wang, D. L.: Effects of buffer capacity on growth, photosynthesis, and solute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata). — Photosynthetica 47: 55–60, 2009a.CrossRefGoogle Scholar
  68. Yang, C., Guo, W. Shi, D.: Physiological roles of organic acids in alkali-tolerance of the alkali-tolerant halophyte Chloris virgata. — Agron. J. 102: 1081–1089, 2010.CrossRefGoogle Scholar
  69. Yang, J.-Y., Zheng, W., Tian, Y., Wu, Y., and Zhou, D.W.: Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. — Photosynthetica 49: 275–284, 2011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Y. Mohsenian
    • 1
  • H. R. Roosta
    • 1
    Email author
  • H. R. Karimi
    • 1
  • M. Esmaeilizade
    • 1
  1. 1.Department of Horticulture, Faculty of AgricultureVali-e-Asr University of RafsanjanRafsanjanIran

Personalised recommendations