, Volume 50, Issue 3, pp 429–436 | Cite as

Water relations and gas exchange in Coespeletia moritziana (Sch. Bip) Cuatrec., a giant rosette species of the high tropical Andes

  • F. Rada
  • A. Azócar
  • A. Rojas-Altuve


Giant rosettes are ones of the most striking features of the vegetation in the high tropical Andes, with Coespeletia moritziana reaching the highest altitudes up to 4,600 m a.s.l. Different from other giant rosettes, this species grows on rock outcrops with poorly developed soils and where water availability may be limited. Two questions are addressed in this study: How does this species respond in terms of water relations to maintain favorable gas-exchange conditions? Considering that adult plants rely on a water-reserving central pith, how do early stages respond to this environment’s extreme conditions? Water relations and gas-exchange studies were carried out on juveniles, intermediate and adult C. moritziana plants during wet and dry seasons in Páramo de Piedras Blancas at 4,200 m a.s.l. Adult plants maintained higher leaf water potentials (ΨL) during the wet season, however, no differences between stages were found for the dry season. Minimum dry season ΨL were never near the turgor loss point in any of the stages. Juveniles show a more strict stomatal control during the dry season to maintain a favorable water status. Net photosynthesis significantly decreased in intermediate and juvenile stages from wet to dry seasons. Our results suggest that C. moritziana resists more extreme conditions compared to other Andean giant rosettes

Additional key words

net photosynthetic rate osmotic adjustment plant growth stages stomatal conductance tropical mountains 



transpiration rate


stomatal conductance


leaf area


net photosynthetic rate


photosynthetic photon flux density


relative humidity


air temperature


leaf temperature


chamber volume


leaf to air vapor pressure difference


water-use efficiency


difference in CO2 concentration


difference in time


leaf water potential


minimum leaf water potential


osmotic potential at turgor loss


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Azócar, A., Rada, F., García-Núñez, C.: [Ecophysiological aspects for the conservation of contrasting tropical ecosystems.] — B. Soc. Bot. Mex. 65: 89–94, 2000. [In Span.]Google Scholar
  2. Baruch, Z.: Elevation differentiation in Espeletia schultzii (Compositae), a giant rosette plant of the Venezuelan paramos. — Ecology 60: 85–98, 1979CrossRefGoogle Scholar
  3. Baruch, Z., Smith, A.P.: Morphological and physiological correlates of niche breadth in two species of Espeletia (Compositae) in the Venezuelan Andes. — Oecologia 38: 71–82, 1979CrossRefGoogle Scholar
  4. Beck, E., Schulze, E.D., Senser, M., Scheibe, R.: Equilibrium freezing of leaf water and extracellular ice formation in Afroalpine ‘giant rosette’ plants. — Planta 162: 276–282, 1984CrossRefGoogle Scholar
  5. Bussmann, R.W.: Vegetation zonation and nomenclature of African mountains — An overview. — Lyonia 11: 41–66, 2006Google Scholar
  6. Cui, X., Tang, Y., Gu, S., Shi, S., Nishimura, S., Zhao, X.: Leaf orientation, incident sunlight and photosynthesis in the alpine species Suassurea superba and Gentiana straminea on the Qinghai-Tibet Plateau. — Arct. Antarct. Alp. Res. 36: 219–228, 2004CrossRefGoogle Scholar
  7. Estrada, C., Monasterio, M.: [Population Ecology of a giant rosette, Espeletia spicata Sch. Bip. (Compositae), from the Desert Páramo.] — Ecotrópicos 1: 25–39, 1988. [In Span.]Google Scholar
  8. Estrada, C., Goldstein, G., Monasterio, M.: Leaf dynamics and water relations of Espeletia spicata and E. timotensis, two giant rosettes of the desert Paramo in the tropical Andes. — Acta Oecol. 12: 603–616, 1991Google Scholar
  9. Fetene, M., Nauke, P., Lüttge, U., Beck, E.: Photosynthesis and photoinhibition in a tropical alpine giant rosette plant, Lobelia rhynchopetalum. — New Phytol. 137: 453–461, 1997CrossRefGoogle Scholar
  10. Fetene, M., Gashaw, M., Hauke, P., Beck, E.: Microclimate and ecophysiological significance of the tree-like life-form of Lobelia rhynchopetalum in a tropical alpine environment. — Oecologia 113: 332–340, 1998CrossRefGoogle Scholar
  11. Field, C., Ball, J.T., Berry, J.A.: Photosynthesis: principles and field techniques. — In: Piercy, R.W., Ehleringer, J., Mooney, H.A., Rundel, P.W. (ed.): Plant Physiological Ecology. Field Methods and Instrumentation. Pp. 209–253. Chapman & Hall, London 1989Google Scholar
  12. Goldstein, G., Meinzer, F., Monasterio, M.: The role of capacitance in the water balance of Andean giant rosette species. — Plant Cell Environ. 7: 179–186, 1984Google Scholar
  13. Goldstein, G., Meinzer, F., Monasterio, M.: Physiological and mechanical factors in relation to size-dependent mortality in an Andean giant rosette species. — Acta Oecol.-Oec. Plant. 6: 263–275, 1985aGoogle Scholar
  14. Goldstein, G., Rada, F., Azócar, A.: Cold hardiness and supercooling along an actitudinal gradient in Andean giant rosette species. — Oecologia 68: 147–152, 1985bCrossRefGoogle Scholar
  15. Goldstein, G., Rada, F., Canales, M.O., Zabala, O.: Leaf gas exchange of two giant caulescent rosette species. — Acta Oecol. 10: 358–370, 1989Google Scholar
  16. Guariguata, M.T., Azócar, A.: Seed bank dynamics and germination ecology in Espeletia timotensis (Compositae), an Andean giant rosette. — Biotropica 20: 54–59, 1998CrossRefGoogle Scholar
  17. Halloy, S.: The use of convergence and divergente in the interpretation of adaptation in high mountain biota. — Evol Theor. 6: 232–255, 1983Google Scholar
  18. Hedberg, O.: Features of afro-alpine plant ecology. — Acta Phytogeogr. Suecica 49: 1–144, 1964Google Scholar
  19. Hedberg, I., Hedberg, O.: Tropical alpine life forms of vascular plants. — Oikos 33: 297–307, 1979CrossRefGoogle Scholar
  20. Monasterio, M.: [Vegetation formations of the Venezuelan Páramos.] — In: Monasterio, M. (ed.): [Ecological Studies of the Andean Páramos.] Pp. 93–158. Ediciones Univ Los Andes, Mérida, Venezuela, Mérida 1989. [In Span.]Google Scholar
  21. Rada, F., Goldstein, G., Azócar, A., Meinzer, F.: Freezing avoidance in Andean giant rosette plants. — Plant Cell Environ. 8: 501–507, 1985CrossRefGoogle Scholar
  22. Rada, F., Goldstein, G., Azócar, A., Torres, F.: Supercooling along an altitudinal gradient in Espeletia schultzii, a caulescent giant rosette species. — J. Exp. Bot. 188: 491–497, 1987CrossRefGoogle Scholar
  23. Rada, F., González, J., Azócar, A., Briceño, B., Jaimez, R.: Net photosynthesis-leaf temperature relations in plant species with different height along an altitudinal gradient. — Acta Oecol. 13: 535–542, 1992Google Scholar
  24. Rada, F., Azócar, A., González, J., Briceño, B.: Leaf gas exchange in Espeletia schultzii Wedd, a giant caulescent rosette species, along an actitudinal gradient in the Venezuelan Andes. — Acta Oecol. 19: 73–79, 1998CrossRefGoogle Scholar
  25. Schulze, E.D., Beck, E., Scheibe, R., Ziegler, P.: Carbon dioxide assimilation and stomatal response of afroalpine giant rosette plants. — Oecologia 65: 207–213, 1985CrossRefGoogle Scholar
  26. Smith, A.P., Young, T.P.: Tropical alpine plant ecology. — Annu. Rev. Ecol. Syst. 18: 137–158, 1987CrossRefGoogle Scholar
  27. Terashima, I., Masuzawa, T., Ohba, H.: Photosynthetic characteristics of a giant alpine plant, Rheum nobile Hood. f. et Thoms. and of some other alpine species measured at 4300 m, in the Eastern Himalaya, Nepal. — Oecologia 95: 194–201, 1993CrossRefGoogle Scholar
  28. Tyree, M.T., Hammel, H.T.: The measurement of the turgor pressure and the water relations of plants by the pressurebomb technique. — J. Exp. Bot. 23: 267–282, 1972CrossRefGoogle Scholar
  29. von Caemmerer, S., Farquhar, G.D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. — Planta 153: 376–387, 1981CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Instituto de Ciencias Ambientales y Ecológicas, Facultad de CienciasUniversidad de Los AndesMéridaVenezuela
  2. 2.Departamento de Cristalografía y Biología Estructural, Instituto de Química-Física “Rocasolano”CSICMadridSpain

Personalised recommendations