, Volume 50, Issue 3, pp 422–428 | Cite as

Photosynthesis and nitrogen allocation in needles in the sun and shade crowns of hybrid larch saplings: effect of nitrogen application

  • Q. Z. Mao
  • M. Watanabe
  • M. Imori
  • Y. S. Kim
  • K. Kita
  • T. Koike


We studied the effects of applying 50 kg(N) ha−1 year−1 of nitrogen (N) on needle photosynthesis, N allocation and nutrient content in the sun- and shade crowns of the hybrid larch F1 (Larix gmelinii var. japonica × L. kaempferi). The light-saturated net photosynthetic rate (P Nmax) was not significantly affected by N application or crown position, although the contents of N, P, K, and chlorophyll (Chl), and the maximum rates of carboxylation and electron transport were lower in needles of the shade crown than of the sun crown. This difference was mainly due to an increase in the intercellular CO2 concentration (C i) in the needles of the shade crown. Analysis of N allocation in photosynthetic systems revealed that more N was allocated to functions related to electron transport and ribulose-1,5-bisphosphate (RuBP) regeneration in needles of the shade crown. N allocation in needles of the hybrid larch F1 was regulated mainly by the light conditions, rather than by N application

Additional key words

foliar nutrient hybrid larch nitrogen deposition sun- and shade needles 



external CO2 concentration


intercellular CO2 concentration






stomatal conductance of water vapor


maximum rate of electron transport




value of Rubisco Michaelis constants for CO2


value of Rubisco Michaelis constants for O2


light-harvesting chlorophyll complex protein


leaf mass per area






nitrogen allocated in light-harvesting chlorophyll complex protein and photosystems


nitrogen allocated in bioenergetics (electron carriers except for photosystems, coupling factor and Calvin cycle enzymes except for Rubisco)


nitrogen allocated in Rubisco


nitrogen allocated in other components in needle


N content per unit leaf mass




net assimilation rate at 1,700 μmol mol−1 CO2


net assimilation rate


light-saturated net photosynthetic rate


photosynthetic nitrogen-use efficiency


photosynthetic photon flux


maximum rate of carboxylation


the specific activity of Rubisco


CO2 compensation point in the absence of dark respiration


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anten, N.P.R., During, H.J.: Is analyzing the nitrogen use at the plant canopy level a matter of choosing the right optimization criterion? & Oecologia 167: 293–303, 2011PubMedCrossRefGoogle Scholar
  2. Baker, N.R., Bowyer, J.R.: Photoinhibition of photosynthesis. & In: Baker, N.R., Bowyer, J.R.: Photoinhibition of Photosynthesis from Molecular Mechanisms to the Field. Pp. 1–19 BIOS Scientific Publishers, Oxford 1994Google Scholar
  3. Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S., Davison, A.W.: A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. & Environ. Exp. Bot. 32: 85–100, 1992CrossRefGoogle Scholar
  4. Bernacchi, C.J., Singsaas, E.L., Pimentel, C., Portis, A.R., Long, S.P.: Improved temperature response functions for models of Rubisco-limited photosynthesis. & Plant Cell Environ. 24: 253–259, 2001CrossRefGoogle Scholar
  5. Braun, S., Thomas, V.F.D., Quiring, R., Flückiger, W.: Does nitrogen deposition increase forest production? The role of phosphorus. & Environ. Pollut. 158: 2043–2052, 2010PubMedCrossRefGoogle Scholar
  6. DeJong, T.M., Day, K.R., Johnson, R.S.: Partitioning of leaf nitrogen with respect to within canopy light exposure and nitrogen availability in peach (Prunus persica). & Trees 3: 89–95, 1989CrossRefGoogle Scholar
  7. Escudero, A., Mediavilla, S.: Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. & J. Ecol. 91: 880–889, 2003CrossRefGoogle Scholar
  8. Farquhar, G.D., von Caemmerer, S., Berry, J.A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. & Planta 149: 78–90, 1980CrossRefGoogle Scholar
  9. Field, C.: Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program. & Oecologia 56: 341–347, 1983CrossRefGoogle Scholar
  10. Fife, D.N., Nambiar, E.K.S.: Changes in the canopy and growth of Pinus radiata in response to nitrogen supply. & Forest Ecol. Manage. 93: 137–152, 1997CrossRefGoogle Scholar
  11. Galloway, J.N., Dentener, F.J., Capone, D.G. et al.: Nitrogen cycles: past, present and future. & Biogeochemistry 70: 153–226, 2004CrossRefGoogle Scholar
  12. Hirose, T., Werger, M.J.A.: Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. & Oecologia 72: 520–526, 1987CrossRefGoogle Scholar
  13. Hirose, T., Werger, M.J.A., Pons, T.L., Rheenen van, J.W.A.: Canopy structure and leaf nitrogen distribution in a stand of Lysimachia vulgaris L. as influenced by stand density. & Oecologia 77: 145–150, 1988 Japan Meteorological Agency: [Statistical Information of Meteorology.], 2012. [In Jap.]CrossRefGoogle Scholar
  14. Jordan, D.B., Ogren, W.L.: The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Dependence on ribulose-bisphosphate concentration, pH and temperature. & Planta 161: 308–313, 1984CrossRefGoogle Scholar
  15. Johnson, I.R., Thornley, J.H.M., Frantz, J.M., Bugbee, B.: A model of canopy photosynthesis incorporating protein distribution through the canopy and its acclimation to light, temperature and CO2. & Ann. Bot. 106: 735–749, 2010PubMedCrossRefGoogle Scholar
  16. Kayama, M., Makoto, K., Nomura, M., Satoh, F., Koike, T.: Dynamics of elements in larch seedlings (Larix kaempferi) regenerated on serpentine soil in northern Japan. & Landscape Ecol. Eng. 5: 125–135, 2009CrossRefGoogle Scholar
  17. Kimura, S. D., Saito, M., Hara, H., Xu, Y.H., Okazaki, M.: Comparison of nitrogen dry deposition on cedar and oak leaves in the Tama Hills using foliar rinsing method. & Water Air Soil Pollut. 202: 369–377, 2009CrossRefGoogle Scholar
  18. Kitaoka, S., Mori, S., Matsuura, Y., Abaimov, A.P., Sugishita, Y., Satoh, F., Sasa, K. and Koike, T.: Comparison between the photosynthetic characteristics of larch species grown in northern Japan and central Siberia. & Proc. Joint Siberia Permafrost Studies 8: 49–54, 2000Google Scholar
  19. Kitaoka, S., Koike, T.: Invasion of broadleaf tree species into a larch plantation: Seasonal light environment, photosynthesis, and nitrogen allocation. & Physiol. Plant. 121: 604–611, 2004CrossRefGoogle Scholar
  20. Kitaoka, S., Watanabe, Y., Koike, T.: The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leafed tree seedlings. & Tree Physiol. 29: 1503–1511, 2009PubMedCrossRefGoogle Scholar
  21. Koike, T.: A trial of revegetation practices with larch species under changing environment. & Landscape Ecol. Eng. 5: 97–98, 2009CrossRefGoogle Scholar
  22. Koike, T., Yazaki, K., Funada, R., Maruyama, Y., Mori, S., Sasa, K.: Forest health and vitality in northern Japan. A history of larch plantation. & Res. Notes Fac. Forestry, The Univ. Joensuu 92: 49–60, 2000Google Scholar
  23. Kupper, P., Sellin, A., Tenhunen, J., Schmidt, M., Rahi, M.: Effects of branch position on water relations and gas exchange of European larch trees in an alpine community. & Trees. 20: 265–272, 2006CrossRefGoogle Scholar
  24. Kuuluvainen, T., Pukkala, T.: Simulation of within-tree and between-tree shading of direct radiation in a forest canopy: effect of crown shape and sun elevation. & Ecol. Model. 49: 89–100, 1989CrossRefGoogle Scholar
  25. Lambers, H., Chapin, F.S., III, Pons, T.L.: Plant Physiological Ecology. & Springer Science + Bussiness Media LIC, New York 2008CrossRefGoogle Scholar
  26. Long, S.P., Bernacchi, C.J.: Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. & J. Exp. Bot. 54: 2393–2401, 2003PubMedCrossRefGoogle Scholar
  27. Magnani, F., Mencuccini, M., Borghetti, M., et al.: The human footprint in the carbon cycle of temperate and boreal forests. & Nature 447: 848–850, 2007PubMedCrossRefGoogle Scholar
  28. Marek, M.V., Urban, O., Šprtová, M., Pokorný, R., Rosová, Z., Kulhavý, J.: Photosynthetic assimilation of sun versus shade Norway spruce [Picea abies (L.) Karst] needles under the long-term impact of elevated CO2 concentration. & Photosynthetica 40: 259–267, 2002CrossRefGoogle Scholar
  29. Matyssek, R., Fromm, H., Roloff, A.: [Biologie der Bäume.] & Eugen Ulmer Kg, Stuttgart 2008. [In Germ.]Google Scholar
  30. Nakaji, T., Takenaga, S., Kuroh, M., Izuta, T.: Photosynthetic response of Pinus densiflora seedlings to high nitrogen load. & Environ. Sci. 9: 269–282, 2002Google Scholar
  31. Niinemets, Ü.: Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies. & Trees 11: 144–154, 1997Google Scholar
  32. Niinemets, Ü., Tenhunen, J.D.: A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade tolerant species Acer saccharum. & Plant Cell Environ. 20: 545–566, 1997CrossRefGoogle Scholar
  33. Niinemets, Ü., Tenhunen, J.D., Canta, N.R., Chavis, M.M., Faria, T., Pereira, J.S., Reynolds, J.F.: Interactive effects of nitrogen and phosphorus on the acclimation potential of foliage photosynthetic properties of cork oak, Quercus suber, to elevated atmospheric CO2 concentrations. & Global Change Biol. 5: 455–470, 1999CrossRefGoogle Scholar
  34. Posch, S., Warren, C.R., Kruse, J., Guttenberger, H., Adams, M.A.: Nitrogen allocation and the fate of absorbed light in 21-year-old Pinus radiata. & Tree Physiol. 28: 375–384, 2008PubMedCrossRefGoogle Scholar
  35. Qu, L.Y., Shinano, T., Quoreshi, A.M., Tamai, Y., Osaki, M., Koike, T.: Allocation of 14C-Carbon in two species of larch seedlings infected with ectomycorrhizal fungi. & Tree Physiol. 24: 1369–1376, 2004PubMedCrossRefGoogle Scholar
  36. Rosati, A., Day, K.R., DeJong, T. M.: Distribution of leaf mass per unit area and leaf nitrogen concentration determine partitioning of leaf nitrogen within tree canopies. & Tree Physiol. 20: 271–276, 2000PubMedCrossRefGoogle Scholar
  37. Ryu, K., Watanabe, M., Shibata, H., Takagi, K., Nomura, M., Koike, T.: Ecophysiological responses of the larch species in northern Japan to environmental changes as a base of afforestation. & Landscape Ecol. Eng. 5: 99–106, 2009CrossRefGoogle Scholar
  38. Schulze, E.-D., Beck, E., Müller-Hohenstein, E.: Plant Ecology. & Springer, Berlin — Heidelberg 2005Google Scholar
  39. Šesták, Z.(ed.): Photosynthesis during Leaf Development. & Academia Praha, Dr. W. Junk Publ., Dordrecht — Boston — Lancaster 1985Google Scholar
  40. Shinano, T., Lei, T.T., Kawamukai, T., Inoue, M.T., Koike, T., Tadano, T.: Dimethylsulfoxide method for the extraction of chlorophylls a and b from the leaves of wheat, field bean, dwarf bamboo, and oak. & Photosynthetica 32: 409–415, 1996Google Scholar
  41. Takashima, T., Hikosaka, K., Hirose, T.: Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. & Plant Cell Environ. 27: 1047–1054, 2004CrossRefGoogle Scholar
  42. Tissue, D.T., Lewis, J.D.: Photosynthetic responses of cottonwood seedlings grown in glacial through future atmospheric [CO2] vary with phosphorus supply. & Tree Physiol. 30: 1361–1372, 2010PubMedCrossRefGoogle Scholar
  43. Warren, C.R., Adams, M.A.: Evergreen trees do not maximize instantaneous photosynthesis. & Trend Plant Sci. 9: 270–274, 2004CrossRefGoogle Scholar
  44. Warren, C.R., Ethier, G.J., Livingston, N.J. et al.: Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. & Plant Cell Environ. 26: 1215–1227, 2003CrossRefGoogle Scholar
  45. Wilson, K.B., Baldocchi, D.D., Hanson, P.J.: Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. & Tree Physiol. 20: 565–575, 2000PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Q. Z. Mao
    • 1
  • M. Watanabe
    • 1
  • M. Imori
    • 1
  • Y. S. Kim
    • 1
  • K. Kita
    • 2
  • T. Koike
    • 1
  1. 1.Silviculture and Forest Ecological StudiesHokkaido UniversitySapporo, HokkaidoJapan
  2. 2.Forestry Research InstituteHokkaido Research OrganizationBibaiJapan

Personalised recommendations