Photosynthetica

, 49:459 | Cite as

Photosynthetic properties of Quercus × hispanica Lam. and Q. suber L. under harsh Central European winter conditions

Original Papers

Abstract

In search for new forestation tree species for future Central European climate conditions, Mediterranean evergreen oak taxa are investigated for their summer drought- and winter frost-hardiness. Here we report on the winter performance of the photosynthetic apparatus of Quercus × hispanica Lam. and its evergreen parental species Q. suber L. under extraordinary harsh winter conditions. Both taxa showed a strong decline of photosystem II (PSII) quantum efficiency (Fv/Fm) with a concomitant increase in the deepoxidation state (DES) of the xanthophyll pigments depending on (severe) frost events during winter, and these parameters significantly correlated with minimum air temperatures during periods of chronic photoinhibition at mid-winter, but not at the onset of winter in response to the first frost nights. Fv/Fm and DES correlated with each other in both taxa throughout the winter.

Additional key words

evergreen frost stress oak photoinhibition xanthophyll cycle 

Abbreviations

A

antheraxanthin

CFLSI5

cumulative frost- and light stress index of 5 preceding days

DES

deepoxidation state

F0

minimal fluorescence of the dark-adapted state

Fm

maximal fluorescence of the dark-adapted state

Fv

variable fluorescence

PSII

photosytem II

qE

energy-dependent chlorophyll fluorescence quenching

Tmin

minimum temperature

V

violaxanthin

Z

zeaxanthin

Notes

Acknowledgements

Thanks are due to the Palmengarten of the City of Frankfurt (Dr. C. Bayer) for giving access to the Quercus specimens. This research was partly funded by the LOEWE programme of the State of Hesse through the Biodiversity and Climate Research Centre, Frankfurt.

References

  1. Adams, W.W., III, Zarter, R., Ebbert, V., Demmig-Adams, B.: Photoprotective strategies of overwintering evergreens. — BioScience 54: 41–49, 2004. doi:10.1641/0006-3568(2004) 054 [0041:PSOOE]2.0.CO;2.CrossRefGoogle Scholar
  2. Aranda, I., Castro, L., Alia, R., Pardos, J.A., Gil, L.: Low temperatures during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). — Tree Physiol. 25: 1085–1090, 2005. doi: 10.1093/treephys/25.8.1085.PubMedGoogle Scholar
  3. Bellarosa, R., Schirone, B., Maggini, F., Fineschi, S.: Inter- and intraspecific variation in three Mediterranean oaks (Q. cerris, Q. suber, Q. crenata). — In: Kremer, A., Muhs, H.-J. (ed.): Inter- and Intraspecific Variation in European Oaks: Evolutionary Implications and Practical Consequences. Pp. 239–276. Office for Official Publications of the European Communities, Luxembourg 1996.Google Scholar
  4. Beyel, V., Brüggemann, W.: Differential inhibition of photosynthesis during pre-flowering drought stress in Sorghum bicolor genotypes with different senescence traits. — Physiol. Plant. 124: 249–259, 2005. doi: 10.1111/j.1399-3054.2005. 00508.x.CrossRefGoogle Scholar
  5. Brüggemann, W., Bergmann, M., Nierbauer, K.U., Pflug, E., Schmidt, C., Weber, D.: Photosynthesis studies on European evergreen and deciduous oaks grown under Central European climate conditions: II. Photoinhibitory and light-independent violaxanthin deepoxidation and downregulation of photosystem II in evergreen, winter-acclimated European Quercus taxa. — Trees 23: 1091–1100, 2009. doi: 10.1007/s00468-009- 0351-y.CrossRefGoogle Scholar
  6. Cavender-Bares, J., Cortes, P., Rambal, S., Joffre, R., Miles, B., Rocheteau, A.: Summer and winter sensibility of leaves and xylem to minimum freezing temperatures: a comparison of co-occuring Mediterranean oaks that differ in leaf lifespan. — New Phytol. 168: 597–612, 2005. doi: 10.1111/j.1469- 8137.2005.01555.x.PubMedCrossRefGoogle Scholar
  7. Delieu, J.T., Walker, D.A.: Polarographic measurement of photosynthetic oxygen evolution by leaf discs. — New Phytol. 89: 165–178, 1981.CrossRefGoogle Scholar
  8. Ensminger, I., Sveshnikov, D., Campbell, D.A., Funk, C., Jansson, S., Lloyd, J., Shibistova, O., Öquist, G.: Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. — Glob. Change Biol. 10: 995–1008, 2004. doi: 10.1111/j.1365-2486.2004.00781.x.CrossRefGoogle Scholar
  9. Färber, A., Young, A.J., Ruban, A.V., Horton, P., Jahns, P.: Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants (the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching). — Plant Physiol. 115: 1609–1618, 1997.PubMedGoogle Scholar
  10. Garcia-Plazaola, J.I., Faria, T., Abadia, J., Abadia, A., Chaves, M.M., Pereira, J.S.: Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under Mediterranean climate. — J. Exp. Bot. 48: 1667–1674, 1997.Google Scholar
  11. Huner, N.P.A., Öquist, G., Sarhan, F.: Energy balance and acclimation to light and cold. — Trends Plant Sci. 3: 224–230, 1998. doi: 10.1016/S1360-1385(98)01248-5.CrossRefGoogle Scholar
  12. Larcher, W.: Temperature stress and survival ability of Mediterranean sclerophyllous plants. — Plant Biosyst. 134: 279–295, 2000. doi: 10.1080/11263500012331350455.CrossRefGoogle Scholar
  13. Martínez-Ferri, E., Manrique, E., Valladares, F., Balaguer, L.: Winter photoinhibition in the field involves different processes in four co-occurring Mediterranean tree species. — Tree Physiol. 24: 981–990, 2004.PubMedGoogle Scholar
  14. Nardini, A., Salleo, S., Lo Gullo, M.A., Pitt, F.: Different responses to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. — Plant Ecol. 148: 139–147, 2000.CrossRefGoogle Scholar
  15. Neuner, G., Ambach, D., Aichner, K.: Impact of snow cover on photoinhibition and winter desiccation in evergreen Rhododendron ferrugineum leaves during subalpine winter. — Tree Physiol. 19: 725–732, 1999. doi: 10.1093/treephys/19.11.725.PubMedGoogle Scholar
  16. Ottander, C., Campbell, D., Öquist, G.: Seasonal changes in photosystem II organisation and pigment composition in Pinus sylvestris. — Planta 197: 176–183, 1995.CrossRefGoogle Scholar
  17. Peguero-Pina, J.J., Sancho-Knapik, D., Morales, F., Flexas, J., Gil-Pelegrín, E.: Differential photosynthetic performance and photoprotection mechanisms of three mediterranean evergreen oaks under server drought stress. — Funct. Plant Biol. 36: 453–462, 2009.CrossRefGoogle Scholar
  18. Schär, C., Vidale, P.L., Lüthi, D., Frei, C., Häberli, C., Liniger, M.A., Appenzeller, C.: The role of increasing temperature variability in European summer heatwaves. — Nature 427: 332–336, 2004. doi: 10.1038/nature02300.PubMedCrossRefGoogle Scholar
  19. Verhoeven, A.S., Adams, W.W., III, Demmig-Adams, B., Croce, R., Bassi, R.: Xanthophyll cycle pigment localization and dynamics during exposure to low temperatures and light stress in Vinca major. — Plant Physiol. 120: 727–737, 1999.PubMedCrossRefGoogle Scholar
  20. Weng, J.-H., Lai, K.-M., Liao, T.-S., Hwang, M.-Y., Chen, Y.N.: Relationships of photosynthetic capacity to PSII efficiency and to photochemical reflectance index of Pinus taiwanensis through different seasons at high and low elevations of sub-tropical Taiwan. — Trees 23: 347–356, 2009.CrossRefGoogle Scholar
  21. Wieser, G.: Carbon dioxide gas exchange of cembran pine (Pinus cembra) at the alpine timberline during winter. — Tree Physiol. 17: 473–477, 1997.PubMedGoogle Scholar
  22. Yamazaki, J.-Y., Kamata, K., Maruta, E.: Seasonal changes in the excess energy dissipation from Photosystem II antennae in overwintering evergreen broad-leaved trees Quercus myrsinaefolia and Machilus thunbergii. — J. Photochem. Photobiol. B: Biology - 104: 348–356, 2011. doi: 10.1016/j.jphotobiol.2010.12.001.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Biodiversity and Climate Research Centre FrankfurtFrankfurtGermany
  2. 2.Department of Ecology, Evolution and DiversityGoethe-University FrankfurtFrankfurtGermany

Personalised recommendations