Advertisement

Photosynthetica

, Volume 49, Issue 1, pp 55–64 | Cite as

28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress

  • Q. Fariduddin
  • M. Yusuf
  • S. Chalkoo
  • S. Hayat
  • A. Ahmad
Original Papers

Abstract

The ameliorative role of 28-homobrassinolide under chilling stress in various growth, photosynthesis, enzymes and biochemical parameters of cucumber (Cucumis sativus L.) were investigated. Cucumber seedlings were sprayed with 0 (control), 10−8, or 10−6 M of 28-homobrassinolide at the 30-day stage. 48 h after treatment plants were exposed for 18 h to chilling temperature (10/8°C, 5/3°C). The most evident effect of chilling stress was the marked reduction in plant growth, chlorophyll (Chl) content, and net photosynthetic rate, efficiency of photosystem II and activities of nitrate reductase and carbonic anhydrase. Moreover, the activities of antioxidant enzymes; catalase (E.C. 1.11.1.6), peroxidase (E.C.1.11.1.7), superoxide dismutase (E.C. 1.15.1.1) along with the proline content in leaves of the cucumber seedlings increased in proportion to chilling temperature. The stressed seedlings of cucumber pretreated with 28-homobrassinolide maintained a higher value of antioxidant enzymes and proline content over the control suggesting the protective mechanism against the ill-effect caused by chilling stress might be operative through an improved antioxidant system. Furthermore, the protective role of 28-homobrassinolide was reflected in improved growth, water relations, photosynthesis and maximum quantum yield of photosystem II both in the presence and absence of chilling stress.

Additional key words

antioxidant enzymes brassinosteroids chilling stress chlorophyll fluorescence Cucumis sativus photosynthesis 

Abbreviations

AOS

active oxygen species

BRs

brassinosteroids

Ci

internal carbon dioxide concentration

CA

carbonic anhydrase

CAT

catalase

CO2

carbon dioxide

CS1

chilling stress 1

CS2

chilling stress 2

DAS

days after sowing

DDW

double distilled water

DM

dry mass

E

transpiration rate

EBR

epi-brassinolide

FM

fresh mass

gs

stomatal conductance

HBL

28-homobrassinolide

LSD

least significant difference

NR

nitrate reductase

PN

net photosynthetic rate

POX

peroxidase

PPFD

photosynthetic photon flux density

PSII

photosystem II

RWC

relative water content

SOD

superoxide dismutase

TM

turgor mass

UV

ultraviolet

WUE

water-use efficiency

Ψw

leaf water potential

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

Financial assistance rendered by Department of Science and Technology, New Delhi, India is gratefully acknowledged by Q. Fariduddin

References

  1. Alam, M.M., Hayat, S., Ali, B., Ahmad, A.: Effect of 28 homobrassinolide on nickel induced changes in Brassica juncea. — Photosynthetica 45: 139–142, 2007.CrossRefGoogle Scholar
  2. Ali, B., Hassan, S.A., Hayat, S., Hayat, Q., Yadav, S., Fariduddin, Q., Ahmad, A.: A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek). — Environ. Exp. Bot. 62: 153–159, 2008.CrossRefGoogle Scholar
  3. Ali, B., Hayat, S., Fariduddin, Q., Ahmad. A.: 24-Epibrassinolide protects against the stress generated by salinity and nickel in Brassica juncea. — Chemosphere 72: 1387–1392, 2008.PubMedCrossRefGoogle Scholar
  4. Ali, B., Hayat, S., Ahmad, A.: 28-Homobrassinolide ameliorates the salt stress in chickpea (Cicer arietinum L.). — Environ. Exp. Bot. 59: 217–223, 2007.CrossRefGoogle Scholar
  5. Ali, M.B., Hahn, E.J., Paek, K.Y.: Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. — Plant Physiol. Biochem. 43: 213–223, 2005.PubMedCrossRefGoogle Scholar
  6. Allen, D.J., Ort, D.R.: Impact of chilling temperatures on photosynthesis in warm-climate plants. — Trends Plant Sci. 6: 36–42, 2001.PubMedCrossRefGoogle Scholar
  7. Aro, E.-M., Virgin, I., Andersson, B.: Photoinhibition of photosystem II. Inactivation, protein damage and turnover. — Biochim. Biophys. Acta 1143: 113–134, 1993.PubMedCrossRefGoogle Scholar
  8. Bajguz, A.: Effect of brassinosteroids on nucleic acid and protein content in cultured cells of Chlorella vulgaris. — Plant Physiol. Biochem. 38: 209–215, 2000.CrossRefGoogle Scholar
  9. Bajguz, A., Hayat, S.: Effects of brassinosteroids on the plant responses to environmental stresses. — Plant Physiol. Biochem. 47: 1–8, 2009.PubMedCrossRefGoogle Scholar
  10. Bates, L.S., Waldren, R.P., Teare, I.D.: Rapid determination of free proline for water stress studies.— Plant Soil 39: 205–207, 1973.CrossRefGoogle Scholar
  11. Beauchamp, L.D., Fridovich, I.: Superoxide dismutase improved assays and assay applicable to acrylamide gels. — Ann. Biochem. 44: 216–287, 1971.CrossRefGoogle Scholar
  12. Berry, J., Björkman, O.: Photosynthetic response and adaptation to temperature in higher plants. — Annu. Rev. Plant. Physiol. 31: 491–543, 1980.CrossRefGoogle Scholar
  13. Björkmann, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characterstics at 77 K among vascular plants of different origins. — Planta 170: 489–504, 1987.CrossRefGoogle Scholar
  14. Cao, S., Xu, Q., Cao, Y., Qian, K., An, K., Zhu, Y., Hu, B.Z., Zhao, H.F., Kuai, B.K.: Loss-of-function mutations in DET2 gene lead to an enhanced resistance to oxidative stress in Arabidopsis. — Physiol. Plant. 123: 57–66, 2005.CrossRefGoogle Scholar
  15. Chance, B., Maehly, A.C.: Assay of catalase and peroxidases. — Meth. Enzymol. 2: 764–775, 1955.CrossRefGoogle Scholar
  16. Clouse, S.D., Sasse, J.M.: Brassinosteroids: Essential regulators of plant growth and development. — Annu. Rev. Plant Physiol. Plant Molecular Biol. 49: 427–451, 1998.CrossRefGoogle Scholar
  17. Crafts-Brandner, S.J., Salvucci, M.E.: Sensitivity of photosynthesis in a C4 plant maize to heat stress. — Plant Physiol. 129: 1773–1780, 2002.PubMedCrossRefGoogle Scholar
  18. Dwivedi, R.S., Randhawa, N.S.: Evolution of a rapid test for the hidden hunger of zinc in plants — Plant Soil 40: 445–451, 1974.CrossRefGoogle Scholar
  19. Fariduddin, Q., Ahmad, A., Hayat, S.: Responses of Vigna radiata to foliar application of 28-homobrassinolide and kinetin. — Biol. Plant. 48: 465–468, 2004.CrossRefGoogle Scholar
  20. Fariduddin, Q., Yusuf, M., Hayat, S., Ahmad A.: Effects of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. — Environ. Exp. Bot. 66: 418–424, 2009a.CrossRefGoogle Scholar
  21. Fariduddin, Q., Khanam, S., Hasan, S.A., Ali, B., Hayat, S.A., Ahmad, A.: Effect of 28-homobrassinolide on the drought stress-induced changes in photosynthesis and antioxidant system of Brassica juncea L. — Acta. Physiol. Plant. 31: 889–897, 2009b.CrossRefGoogle Scholar
  22. Gomez, K.A., Gomez, A.A.: Statistical Procedures for Agricultural Research. — John Wileys & Sons, New York 1984.Google Scholar
  23. Grove, M.D., Spencer, G.F., Rohwedder, W.K., Mandava, N.B., Worley, J.F., Warthen, J.D., Jr., Steffens, G.L., Flippen-Anderson, J.L., Cook, J.C., Jr.: Brassinolide a plant growth promoting steroid isolated from Brassica napus pollen. — Nature 281: 216–217, 1979.CrossRefGoogle Scholar
  24. Hasan, S.A., Hayat, S., Ali, B., Ahmad, A.: 28-homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidants. — Environ. Pollut. 151: 60–66, 2008.PubMedCrossRefGoogle Scholar
  25. Hayat, S., Ali, B., Hasan, S.A., Ahmad, A.: Brassinosteroid enhanced the level of antioxidants under cadmium stress in Brassica juncea. — Environ. Exp. Bot. 60: 33–41, 2007.CrossRefGoogle Scholar
  26. Hewitt, E.J.: Sand and Water Culture Methods used in the Study of Plant Nutrition. — Commonwealth Agricultural Bureaux, Farnham Royal, Kent 1966.Google Scholar
  27. Hopkins, W.J.: Introduction to Plant Physiology. — John Wiley & Sons, New York 1995.Google Scholar
  28. Janeckzo, A., Gullner, G., Skoczowski, A., Dubert, F., Barna, B.: Effects of brassinosteroid infilteration prior to cold treatment on ion leakage and pigment contents in rape leaves. — Biol. Plant. 51: 355–358, 2007.CrossRefGoogle Scholar
  29. Jaworski, E.G.: Nitrate reductase assay in intact plant tissues. — Biochem.Biophy. Res. Commun. 43: 1274–1279, 1971.CrossRefGoogle Scholar
  30. Kagale, S., Divi, U.K., Kronchko, J.E., Keller, W.A., Krishna, P.: Brassinosteroid conifers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. — Planta 225: 353–364, 2007.Google Scholar
  31. Kalinich, J.F., Mandava, N.B., Todhunter, and J.A.: Relationship of nucleic acid metabolism on brassinolide-induced responses in beans. — J. Plant Physiol. 120: 207–214, 1985.Google Scholar
  32. Katsumi, M.: Physiological modes of brassinolide action in ccumber hypocotyls growth. — In: Cutler, H.G., Yokota, T, Adam, G. (ed.): Brassinosteroids: Chemistry, Bioactivity and Applications. American Chemical Society Symposium Series 474. Pp. 246–254, American Chemical Society, Washington, 1991.CrossRefGoogle Scholar
  33. Kishore, P.B.K., Sangam, S., Amrutha, R.N., Laxmi, P.S., Naidu, K.R., Rao, K.R.S.S., Rao, S., Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of proline biosynthesis degradation uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. — Current Science 88: 424–438, 2005.Google Scholar
  34. Kratsch, H.A., Wise, R.R.: The ultrastructure of chilling stress. — Plant Cell Environ. 23: 337–350, 2000.CrossRefGoogle Scholar
  35. Krishna, P.: Brassinosteroid-mediated stress responses. — J. Plant Growth Regul. 22: 289–297, 2003.PubMedCrossRefGoogle Scholar
  36. Lee, H.D., Lee, B.C.: Chilling stress induced changes of antioxidant enzymes in the leaves of cucumber: in gel enzyme activity assays. — Plant Science 159: 75–85, 2000.PubMedCrossRefGoogle Scholar
  37. Mai, Y.Y., Lin, J.M., Zeng, X.L., Pan, R.J.: Effect of homobrassinolide on the activity of nitrate reductase in rice seedling. — Plant Physiol. Commun. 2: 50–52, 1989.Google Scholar
  38. Morales, D., Rodríguez, D., Dell’Amico, J., Nicolás, E., Torrecillas, A., Sánchez Blanco, M.J.: High temperature pre conditioning and thermal shock imposition affect water relations gas exchange and root hydraulic conductivity in tomato. — Biol. Plant. 47: 203–208, 2003.CrossRefGoogle Scholar
  39. Mussig, C., Fischer, S., Altmann, T.: Brassinosteroid regulated gene expression. — Plant Physiol. 129: 1241–1251, 2002.PubMedCrossRefGoogle Scholar
  40. Oidaira, H., Sano, S.; Koshiba, T.; Ushimaru, T.: Enhancement of antioxidative enzyme activities in chilled rice seedlings. — J. Plant Physiol. 156: 811–813, 2000.Google Scholar
  41. Ozdemir, F., Bor, M., Demiral, T., Turkan, I.: Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidant system of rice (Oryza sativa L.) under salinity stress. — Plant Growth Regul. 41: 1–9, 2004.Google Scholar
  42. Sairam, R.K.: Effects of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress conditions of two wheat varieties. — Plant Growth Regul. 14: 173-181, 1994.Google Scholar
  43. Sairam, R.K., Tyagi, A.: Physiology and molecular biology of salinity stress tolerance in plants. — Current Sci. 86: 407–421, 2004.Google Scholar
  44. Saltveit, M.E., Morris, L.L.: Overview on chilling injury of horticultural crops. — In: Wang, C.Y. (ed.): Chilling Injury of Horticultural Crops. Pp 3–15. CRC Press, Boca Raton 1990.Google Scholar
  45. Salveit, M.E.: Chilling injury is reduced in cucumber and rice seedlings in tomato pericarp discs by heat-shocks applied after chilling. — Postharvest Biol. Tech. 21: 169–177, 2001.CrossRefGoogle Scholar
  46. Salvucci, M.E., Crafts-Brander, S.J.: Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. — Plant Physiol. 134: 1460–1470, 2004.PubMedCrossRefGoogle Scholar
  47. Sasse, J.M.: Physiological actions of brassinosteroids: An update. — J. Plant Growth Regul. 22: 276–288, 2003.PubMedCrossRefGoogle Scholar
  48. Solomonson, L.P., Barber, M.J.: Assimilatory nitrate reductase functional properties and regulation. — Annu. Rev. Plant Physiol. Mol. Biol. 41: 225–25, 1990.CrossRefGoogle Scholar
  49. Sonoike, K.: The different roles of chilling temperature in the photoinhibition of photosystem I and photosystem II. — J. Photochem. Photobiol. 48: 136–141, 1999.CrossRefGoogle Scholar
  50. Sutka, J., Galiba, G.: Abiotic Stresses: Cold Stress. — Agr. Res. Inst. Hung. Acad. Sci., Martonvasar 2003.Google Scholar
  51. Taiz, L., Zeiger.: Plant Physiology. 4th Ed. — Sinauer Assoc. Publ., Sunderland 2006.Google Scholar
  52. Tikhomirova, E.V.: Changes in nitrogen metabolism in millet and elevated temperatures. — Field Crops Res. 11: 259–264, 1995.CrossRefGoogle Scholar
  53. van Staden, L., Jagr, A.K.: Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. — Plant Growth Regul. 25: 81–87, 1998.CrossRefGoogle Scholar
  54. Vardhini, B.V., Rao, S.S.R.: Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. — Plant Growth Regul. 41: 25–31, 2003.CrossRefGoogle Scholar
  55. Walker, M.A., McKersie, B.D.: Role of the ascorbateglutathione antioxidant system in chilling resistance of tomato. — J. Plant Physiol. 141: 234–239, 1993.Google Scholar
  56. Wang, C.Y.: Physiological and biochemical responses of plants to chilling stress. — Hortsci. 17: 173–186, 1982.Google Scholar
  57. Wilen, R.W., Sacco, M., Gusta, L.V., Krishna, P.: Effects of 24-epibrassinolide on freezing and thermotolerance of bomegrass (Bromus inermis) cell cultures. — Physiol. Plant. 95: 195–202, 1995.CrossRefGoogle Scholar
  58. Wise, R.R., Naylor, A.W.: Chilling-enhanced photo-oxidation. The peroxidative destruction of lipids during chilling injury to photosynthesis and ultrastructure. — Plant Physiol. 83: 272–277, 1987.PubMedCrossRefGoogle Scholar
  59. Yang, M.T., Chen, S.L., Lin, C.Y., Chen, Y.M.: Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. — Planta 221: 374–385, 2005.PubMedCrossRefGoogle Scholar
  60. Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Noques, S.: A role of brassinosteroids in the regulation of photosynthesis in Cucumis sativus. — J. Exp. Bot. 55: 1135–1143, 2004.PubMedCrossRefGoogle Scholar
  61. Yu, J.Q., Zhou, Y.H., Huang, L.F., Allen D.J.: Chill induced inhibition of photosynthesis: Genotype variation within Cucumis sativus. — Plant Cell Physiol. 43: 1182–1188, 2002.PubMedCrossRefGoogle Scholar
  62. Zhou, Y.H., Huang, L.F., Zhang, Y.L., Shi, K., Yu, J.Q., Nogués, S.: Chill induced decrease in capacity of RuBP carboxylation and associated H2O2 accumulation in cucumber leaves are alleviated by grafting onto fig leaf gourd. — Ann. Bot. 100: 839–848, 2007.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Q. Fariduddin
    • 1
  • M. Yusuf
    • 1
  • S. Chalkoo
    • 1
  • S. Hayat
    • 1
  • A. Ahmad
    • 1
  1. 1.Plant Physiology Section, Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations