Advertisement

Photosynthetica

, Volume 49, Issue 2, pp 201–208 | Cite as

The influence of low temperature on photosynthesis and antioxidant enzymes in sensitive banana and tolerant plantain (Musa sp.) cultivars

  • Q. Zhang
  • J. Z. Zhang
  • W. S. Chow
  • L. L. Sun
  • J. W. Chen
  • Y. J. Chen
  • C. L. PengEmail author
Original Papers

Abstract

Low temperature (LT) is one of the major factors that limit crop production and reduce yield. To better understand the cold-tolerance mechanism in the plantains, a sensitive cultivar Williams (Musa acuminata AAA cv. Williams) and a tolerant cultivar Cachaco (Musa paradisiaca ABB cv. Dajiao) were used. LT resulted in increased malondialdehyde (MDA) content, elevated contents of hydrogen peroxide (H2O2) and superoxide radical (O 2 ·− ), and decreased photochemical efficiency (Fv/Fm) and net photosynthetic rate (P N), but cv. Cachaco showed better LT tolerance than cv. Williams. After LT treatment for 120 h, total scavenging capability (DPPH· scavenging capability) in Williams showed a significant decrease but no significant alternations was found in Cachaco. Ascorbate peroxidase (APX) and peroxidase (POD) displayed a significant increase but superoxide dismutase (SOD) showed no significant alternations and catalase (CAT) showed a significant decrease in Cachaco after 120 h of LT treatment. All the four antioxidant enzymes above showed a significant decrease in Williams after 120 h of LT treatment. Our results suggest that higher activities of APX, POD, SOD, and DPPH· scavenging capability to a certain extent can be used to explain the higher cold tolerance in the plantain, which would provide a theoretical guidance for bananas production and screening cold-resistant variety.

Additional key words

antioxidant enzyme banana low temperature photosynthesis plantain 

Abbreviations

APX

ascorbate peroxidase

ASC

ascorbate

CAT

catalase

DAB

diaminobenzidine

DPPH·

1,1-diphenyl-2-picrylhydrazyl

Fv/Fm

maximum photochemical efficiency of photosystem II

gs

stomatal conductance

H2O2

hydrogen peroxide

LT

low temperature

MDA

malondialdehyde

NBT

nitroblue tetrazolium

O2·−

superoxide radical

1O2

singlet oxygen

·OH

hydroxyl radical

PN

net photosynthetic rate

POD

peroxidase

SOD

superoxide dismutase

TCA

trichloroacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research is financially supported by Guangxi Natural Science Foundation Program (No.0991078).

References

  1. Aebi, H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.PubMedCrossRefGoogle Scholar
  2. Aebi, H.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 673–677. Academic Press, New York 1974.Google Scholar
  3. Apel, K., Hirt, H.: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. — Annu. Rev. Plant Biol. 55: 373–399, 2004.PubMedCrossRefGoogle Scholar
  4. Bertamini, M., Muthuchelian, K., Rubinigg, M., Zorer, R., Nedunchezhian, N.: Photoinhibition of photosynthesis in leaves of grapevine (Vitis vinifera L. cv. Riesling). Effect of chilling nights. — Photosynthetica. 43: 551–557, 2005.CrossRefGoogle Scholar
  5. Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 7: 248–254, 1976.CrossRefGoogle Scholar
  6. Damasco, O.P., Smith, M.K., Godwin, I.D., Adkins, S.W., Smillie, R.M., Hetherington, W.E.: Micropropagated dwarf off-type Cavendish bananas (Musa spp., AAA) show improved tolerance to suboptimal temperatures. — J. Agr. Res. 48: 377–384, 1997.CrossRefGoogle Scholar
  7. Ebrahim, M.K.H., Vogg, G., Osman, M.N.E.H., Komor, E.: Photosynthetic performance and adaptation of sugarcane at suboptimal temperatures. — J. Plant Physiol. 153: 587–592, 1998.Google Scholar
  8. Elstner, E.F., Wagner, G.A., Schutz, W.: Activated oxygen in green plants in relation to stress situations. — In: Randall, D.D., Blevis, D.G., Campbell, W.H. (ed.): Current Topics Plant Biochemistry and Physiology. Vol. 7: 159–187, Univ. Missouri, Columbia 1988.Google Scholar
  9. Gawel, N., Jarret, R.L.: Cytoplasmic genetic diversity in bananas and plantains. — Euphytica 52: 19–23, 1991.Google Scholar
  10. Giannopolitis, C.N., Ries, S.K.: Superoxide dismutase. I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.PubMedCrossRefGoogle Scholar
  11. Havaux, M., Barber, J., Chapman, D.J., Lannoye, R.: Changes in leaf and thylakoid membrane lipids during low-temperature adaptation of winter barley (Hordeum vulgare L.). — J. Exp. Bot. 35: 948–954, 1984.CrossRefGoogle Scholar
  12. Holá, D., Kutík, J., Kočová, M., Rothová, O.: Low-temperature induced changes in the ultrastructure of maize mesophyll chloroplasts strongly depend on the chilling pattern/intensity and considerably differ among inbred and hybrid genotypes. — Photosynthetica 46: 329–338, 2008.CrossRefGoogle Scholar
  13. Hurry, V., Huner, N., Selstam, E., Gardeström, P., Öquist, G.: Photosynthesis at low growth temperatures. — In: Raghavendra, A.S. (ed.): Photosynthesis: A Comprehensive Treatise. Pp. 238–249. Cambridge Univ. Press, Cambridge 1998.Google Scholar
  14. Ishitani, M., Xiong, L.M., Lee, H.J., Stevenson, B., Zhu, J.K.: HOS1, a genetic locus involved in cold-responsive gene expression in Arabidopsis. — Plant Cell 10: 1151–1161, 1998.PubMedCrossRefGoogle Scholar
  15. Ishitani, M., Xiong, L.M., Stevenson, B., Zhu, J.K.: Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic aciddependent and abscisic acid-independent pathways. — Plant Cell 9: 1935–1949, 1997.PubMedCrossRefGoogle Scholar
  16. Karabal, E., Yucel, M., Oktem, H.A.: Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. — Plant Sci. 164: 925–933, 2003.CrossRefGoogle Scholar
  17. Kulkarni, V.M., Ganapathi, T.R.: A simple procedure for slow growth maintenance of banana (Musa spp.) embryogenic cell suspension cultures at low temperature. — Curr. Sci. 96: 1372–1374, 2009.Google Scholar
  18. Kumar, V., Yadav, S.K.: Proline and betaine provide protection to antioxidant and methylglyoxal detoxification systems during cold stress in Camellia sinensis (L.) O. Kuntze. — Acta Physiol. Plant. 31: 261–269, 2009.CrossRefGoogle Scholar
  19. Kuzniak, E., Urbanek, H.: The involvement of hydrogen peroxide in plant responses to stresses. — Acta Physiol. Plant. 22: 195–203, 2000.CrossRefGoogle Scholar
  20. Larrauri, J.A., Sanchez-Moreno., C, Saura-Calixto, F.: Effect of temperature on the free radical scavenging capacity of extracts from red and white grape pomace peels. — J. Agr. Food Chem. 46: 2694–2697, 1998.CrossRefGoogle Scholar
  21. Lee, S.C., Kim, J.Y., Kim, S.H. et al.: Trapping and characterization of cold-responsive genes from T-DNA tagging lines in rice. — Plant Sci. 166: 69–79, 2004.CrossRefGoogle Scholar
  22. Lei, T., Feng, H., Sun, X., Dai, Q.L. Zhang, F., Liang, H.G., Lin H.H.: The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. — Plant Growth Regul. 60: 35–42, 2010.CrossRefGoogle Scholar
  23. Moller, I.M.: Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. — Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 561–591, 2001.PubMedCrossRefGoogle Scholar
  24. Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplast. — Plant Cell Physiol. 22: 867–880, 1981.Google Scholar
  25. Noctor, G., Veljovic-Jovanovic, S., Driscoll, S., Novitskaya, L., Foyer, C.H.: Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? — Ann. Bot. 89: 841–850, 2002.PubMedCrossRefGoogle Scholar
  26. Peng, C.L., Chen, S.W., Lin, Z.F., Lin, G.Z.: [Detection of antioxidative capacity in plants by scavenging organic free radical DPPH.] — Prog. Biochem. Biophys. 27: 658–661, 2000. [In Chin.]Google Scholar
  27. Pinedo, M.L., Hernández, G.F., Conde, R.D., Tognetti, J.A.: Effect of low temperature on the protein metabolism of wheat leaves. — Biol. Plant. 43: 363–367, 2000.CrossRefGoogle Scholar
  28. Putter, J.: Peroxidases. — In: Bregmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 685–690. Academic Press, New York 1974.Google Scholar
  29. Robinson, J.C.: Bananas and plantains. — Crop Production Science in Horticulture Series No 5. CABI. Pp. 1–238. Wallingford 1996.Google Scholar
  30. Romero-Puertas, M.C., Rodriguez-Serrano, M., Corpas, F.J., Gómez, M., Del Río, L.A., Sandalio, L.M.: Cadmium-induced subcellular accumulation of O2·− and H2O2 in pea leaves. — Plant Cell Environ. 27: 1122–1134, 2004.CrossRefGoogle Scholar
  31. Ronquist, G., Waldenström, A.: Imbalance of plasma membrane ion leak and pump relationship as a new aetiological basis of certain disease states. — J. Int. Med. 254: 517–526, 2003.CrossRefGoogle Scholar
  32. Rowe, P.: Breeding an intractable crop. Bananas. — In: Rachie, K.O., Lyman, J.M. (ed.): Genetic Engineering for Crop Improvement. Working Papers. Pp. 66–84. Rockefeller Foundation, Washington 1981.Google Scholar
  33. Shao, H.B., Chu, L.Y., Shao, M.A., Jaleel, C.A., Mi, H.M.: Higher plant antioxidants and redox signaling under environmental stresses. — Compt. Rend. Biol. 331: 433–441, 2008.CrossRefGoogle Scholar
  34. Singla-Pareek, S.L., Yadav, S.K., Pareek, A., Reddy, M.K., Sopory, S.K.: Transgenic tobacco overexpressing glyoxalase pathway enzymes grow and set viable seeds in zinc-spiked soils. — Plant Physiol. 140: 613–623, 2006.PubMedCrossRefGoogle Scholar
  35. Smillie, R.M., Hetherington, S.E., He, J., Nott, R.: Photoinhibition at chilling temperatures. — Aust. J. Plant Physiol. 15: 207–222, 1988.CrossRefGoogle Scholar
  36. Smirnoff, N.: Tansley review. 52. The role of active oxygen in the responses of plants to water deficit and desiccation. — New Phytol. 125: 27–58, 1993.CrossRefGoogle Scholar
  37. Sun, X., Yuan, S., Lin, H.H.: Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. — Z. Naturforsch. C: J. Biosci. 61: 245–250, 2006.Google Scholar
  38. Sundar, D., Chaitanya, K.V., Jutur, P.P., Reddy, A.R.: Low temperature-induced changes in antioxidative metabolism in rubber-producing shrub, guayule (Parthenium argentatum Gray). — Plant Growth Regul. 44: 175–181, 2004.CrossRefGoogle Scholar
  39. Turner, D.W., Lahav, E.: The growth of banana plants in relation to temperature. — Aust. J. Plant Physiol. 10: 43–53, 1983.CrossRefGoogle Scholar
  40. Zeng, X.Q., Chow, W.S., Su, L.J., Peng, X.X., Peng, C.L.: Protective effect of supplemental anthocyanins on Arabidopsis leaves under high light. — Physiol. Plant. 138: 215–225, 2010.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Q. Zhang
    • 1
  • J. Z. Zhang
    • 2
    • 3
  • W. S. Chow
    • 4
  • L. L. Sun
    • 1
  • J. W. Chen
    • 5
  • Y. J. Chen
    • 1
  • C. L. Peng
    • 1
    Email author
  1. 1.College of Life Science, Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory of Biotechnology for Plant DevelopmentSouth China Normal UniversityGuangzhouChina
  2. 2.Guangxi Key Laboratory of Biotechnology of Crop Genetic ImprovementNanningChina
  3. 3.Institute of Biotechnology of Guangxi Academy of Agricultural SciencesNanningChina
  4. 4.Division of Plant Sciences, Research School of Biology, College of Medicine, Biology and EnvironmentThe Australian National UniversityCanberra, Australian Capital Territory 0200Australia
  5. 5.Department of Crop ScienceYunnan Agricultural UniversityKunmingYunnan, China

Personalised recommendations