, Volume 48, Issue 1, pp 16–22 | Cite as

Light-independent accumulation of essential chlorophyll biosynthesis- and photosynthesis-related proteins in Pinus mugo and Pinus sylvestris seedlings

  • K. BreznenováEmail author
  • V. Demko
  • A. Pavlovič
  • E. Gálová
  • R. Balážová
  • J. Hudák
Original Papers


Dark-grown seedlings of Pinus mugo Turra and Pinus sylvestris L. accumulate chlorophyll (Chl) and its precursor protochlorophyllide (Pchlide). Pchlide reduction is a key regulatory step in Chl biosynthesis. In the dark, Pchlide is reduced by light-independent Pchlide oxidoreductase (DPOR) encoded by three plastid genes chlL, chlN, and chlB (chlLNB). To investigate the differences in chlLNB gene expressions, we compared the dark-grown and 24-h illuminated seedlings of P. mugo and P. sylvestris. Expression of these genes was found constitutive in all analyzed samples. We report light-independent accumulation of important proteins involved in Chl biosynthesis (glutamyl-tRNA reductase) and photosystem formation (D1 and LHCI). Chl and Pchlide content and plastid ultrastructure studies were also performed.

Additional key words

chlorophyll biosynthesis conifer seedlings plastid gene expression plastid ultrastructure protochlorophyllide reduction 



5-aminolevulinic acid






chlL, chlN, and chlB genes


plastid DNA


light-independent protochlorophyllide oxidoreductase


glutamyl-tRNA reductase


light-harvesting complex


light-dependent protochlorophyllide oxidoreductase




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research work was supported by the grant from the Slovak Research and Development Agency (APVV-20-020805). We thank Y. Fujita and B. Grimm for kindly providing the primary antibodies used in this work and Jarmila Šramková for excellent technical assistance.


  1. Alosi, M.C., Neale, D.B., Kinlaw, C.S.: Expression of cab genes in douglas-fir is not strongly regulated by light. — Plant Physiol. 93: 829–832, 1990.CrossRefPubMedGoogle Scholar
  2. Armstrong, G.A.: Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. — J. Photochem. Photobiol. B: Biol. 43: 87–100, 1998.CrossRefGoogle Scholar
  3. Bock, R.: Sense from nonsense: How the genetic information of chloroplast is altered by RNA editing. — Biochimie 82: 549–557, 2000.CrossRefPubMedGoogle Scholar
  4. Buchanan, B.B., Gruissem, W., Jones, R.L. (ed.): Biochemistry & Molecular Biology of Plants. 1367 pp. ASPB, Rockville 2000.Google Scholar
  5. Canovas, F., McLarney, B., Silverthorne, J.: Light-independent synthesis of LHC IIb polypeptides and assembly of the major pigmented complexes during the initial stages of Pinus palustris seedling development. — Photosynth. Res. 38: 89–97, 1993.CrossRefGoogle Scholar
  6. Dawson, R.C.M., Elliot, D.C, Elliot, W.H., Jones, K.M.: Data for Biochemical Research. 3rd Ed. — Oxford Sci., Oxford, 1986.Google Scholar
  7. Demko, V., Pavlovič, A., Valková, D., Slováková, Ł., Grimm, B., Hudák, J.: Novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. — Planta 230: 165–176, 2009.CrossRefPubMedGoogle Scholar
  8. Dražić, G. and Mihailović, N.: Chlorophyll accumulation in black pine seedlings treated with 5-aminolevulinic acid. — Biol. Plant. 41: 277–280, 1998.Google Scholar
  9. Fujita, Y.: Protochlorophyllide reduction: A key step in the greening of plants. — Plant Cell Physiol. 37: 411–421, 1996.PubMedGoogle Scholar
  10. Fujita, Y., Bauer, C.E.: The light-independent protochlorophyllide oxidoreductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. — In: Kadish, K.M., Smith, K.M., Guilard, R. (ed.): The Porphyrine Handbook, pp.109–156. Elsevier Sci., Oxford 2003.Google Scholar
  11. Hudák, J., Gálová, E., Zemanová, L.: Plastid morphogenesis. — In: Pessarakli M. (ed.): Handbook of Photosynthesis. Pp. 221–245. CRC Press Taylor & Francis Group, Boca Raton — London — New York — Singapore 2005.Google Scholar
  12. Karpinska, B., Karpinski, S., Hällgren, J.-E.: The chlB gene encoding a subunit of light-independent protochlorophyllide reductase is edited in chloroplasts of conifers. — Curr. Genet. 31: 343–347, 1997.CrossRefPubMedGoogle Scholar
  13. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. — J. Cell Biol. 27: 137, 1965.Google Scholar
  14. Koski, V.M., Smith, J.H.C.: The isolation and spectral absorbtion properties of protochlorophyll from etiolated barley seedlings. — J. Amer. Chem. Soc. 70: 3558–3562, 1948.CrossRefGoogle Scholar
  15. Kruse, E., Grimm, B., Beator, J., Kloppstech, K.: Developmental and circadian control of the capacity for δ-aminolevulinic acid synthesis in green barley. — Planta 202: 235–241, 1997.CrossRefGoogle Scholar
  16. Kusumi, J., Sato, A., Tachida, H.: Relaxation of functional constraint on light-independent protochlorophyllide oxidoreductase in Thuja. — Mol. Biol. Evol. 23: 941–948, 2006.CrossRefPubMedGoogle Scholar
  17. Lichtenthaler, H.K.: Chlorophylls and carotenoids — pigments of photosynthetic biomembranes. — Methods Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  18. Mariani, P., De Carli, M.E., Rascio, N., Baldan, B., Casadoro, G., Gennari, G., Bodner, M., Larcher, W.: Synthesis of chlorophyll and photosynthetic competence in etiolated and greening seedlings of Larix decidua as compared with Picea abies. — J. Plant Physiol. 137: 5–14, 1990.Google Scholar
  19. Muramatsu, S., Kojima, K., Igasaki, T., Azumi, Y., Shinohara, K.: Inhibition of the light-independent synthesis of chlorophyll in pine cotyledons at low temperature. — Plant Cell Physiol. 42: 868–872, 2001.CrossRefPubMedGoogle Scholar
  20. Nogaj, L.A., Srivastava, A., van Lis, R., Beale, S.I.: Cellular levels of glutamyl-tRNA reductase and glutamate-1-semialdehyde aminotransferase do not control chlorophyll synthesis in Chlamydomonas reinhardtii. — Plant Physiol. 139: 389–396, 2005.CrossRefPubMedGoogle Scholar
  21. Peer, W., Silverthorne, J., Peters, J.L.: Developmental and light-regulated expression of individual members of the light-harvesting complex b gene family in Pinus palustris. — Plant Physiol. 111: 627–634, 1996.CrossRefPubMedGoogle Scholar
  22. Shi, C., Shi, X.: Expression switching of three genes encoding light-independent protochlorophyllide oxidoreductase in Chlorella protothecoides. — Biotech. Lett. 28: 261–265, 2006.CrossRefGoogle Scholar
  23. Shinohara, K., Murakami, A., Fujita, Y.: Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons. — Plant Physiol. 98: 39–43, 1992.CrossRefPubMedGoogle Scholar
  24. Skinner, J.S. and Timko, M.P.: Differential expression of genes encoding the light- dependent and light-independent enzymes for protochlorophyllide reduction during development in loblolly pine. — Plant Mol. Biol. 39: 577–592, 1999.CrossRefPubMedGoogle Scholar
  25. Spano, A.J., He, Z.H., Timko, M.P.: NADPH — protochlorophyllide oxidoreductases in white pine (Pinus strobus) and loblolly pine (P. taeda) — evidence for light and developmental regulation of expression and conservation in gene organization and protein-structure between angiosperms and gymnosperms. — Mol. Gen. Genet. 236: 86–95, 1992.PubMedGoogle Scholar
  26. Tanaka, R., Tanaka, A.: Tetrapyrolle biosynthesis in higher plants. — Annu. Rev. Plant Biol. 58: 321–346, 2007.CrossRefPubMedGoogle Scholar
  27. Triboush, S.O., Danilenko, N.G., Davydenko, O.G.: A method for isolation of chloroplast DNA and mitochondial DNA from sunflower. — Plant Mol. Biol. Rep. 16: 183–189, 1998.CrossRefGoogle Scholar
  28. Vasileuskaya, Z., Oster, U., Beck, C.F.: Mg-protoporphyrin IX and heme control HEMA, the gene encoding the first specific step of tetrapyrrole biosynthesis, in Chlamydomonas reinhardtii. — Eukaryot. Cell 10: 1620–1628, 2005.CrossRefGoogle Scholar
  29. Yamamoto, N., Mukai, Y., Matsuoka, M., Kanomurakami, Y., Tanaka, Y., Ohashi, Y., Ozeki, Y., Odani, K.: Lightindependent expression of cab and rbcS genes in dark-grown pine seedlings. — Plant Physiol. 95: 379–383, 1991.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • K. Breznenová
    • 1
    Email author
  • V. Demko
    • 1
  • A. Pavlovič
    • 1
  • E. Gálová
    • 2
  • R. Balážová
    • 1
  • J. Hudák
    • 1
  1. 1.Department of Plant Physiology, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic
  2. 2.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic

Personalised recommendations