, Volume 47, Issue 4, pp 631–634 | Cite as

Feeding with aminolevulinic acid increased chlorophyll content in Norway spruce (Picea abies) in the dark

  • A. PavlovičEmail author
  • V. Demko
  • M. Durchan
  • J. Hudák
Brief Communication


In contrast to angiosperms, which accumulate protochlorophyllide after application of aminolevulinic acid in the dark, feeding with aminolevulinic acid (0.01–20 mM) via the roots in the 18-d-old seedlings of Norway spruce (Picea abies) stimulated not only protochlorophyllide but also chlorophyll accumulation.


Levulinic Acid Chlorophyllide LHCII Protein Etiolate Barley Seedling Magnesium Porphyrin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



aminolevulinic acid






light-independent protochlorophyllide oxidoreductase


fresh mass


light-harvesting complex


light-dependent protochlorophyllide oxidoreductase






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank Ivana Hunalová for technical assistance. This work was supported by grant APVV — 20-020805 and AV0Z50510513.


  1. Al-Thabet, S.S.: Promotive effect of 5-amino levulinic acid on growth and yield of wheat grown under dry conditions. — J. Agron. 5: 45–49, 2006CrossRefGoogle Scholar
  2. Armstrong, G.A.: Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. — J. Photochem. Photobiol. B: Biol. 43: 87–100, 1998.CrossRefGoogle Scholar
  3. Awad, M.A.: Promotive effect of a 5-aminolevulinic acid-based fertilizer on growth of tissue culture-derived date palm plants (Phoenix dactylifera L.) during acclimation. — Sci. Hort. 118: 48–52, 2008.CrossRefGoogle Scholar
  4. Canovas, F., McLarney, B., Silverthorne J.: Light-independent synthesis of LHC IIb polypeptides and assembly of the major pigmented complexes during the initial stages of Pinus palustris seedling development. — Photosynth. Res. 38: 89–97, 1993.CrossRefGoogle Scholar
  5. Dražić, G., Mihailović, N.: Chlorophyll accumulation in black pine seedlings treated with 5-aminolevulinic acid. — Biol. Plant. 41: 277–280, 1998.Google Scholar
  6. Fujita, Y., Bauer, C.E.: The light-independent protochlorophyllide reductase: A nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. — In: Kadish, K., Smith, K., Guilard, R. (ed.): The Porphyrin Handbook. Vol. 13. Pp. 109–156. Elsevier Science, Amsterdam 2003.Google Scholar
  7. Granick, S.: Magnesium porphyrins formed by barley seedlings treated with δ-aminolevulinic acid. — Plant Physiol. 34[Supl.]: XVIII, 1959.Google Scholar
  8. Lichtenthaler, H.K.: Chlorophylls and carotenoids — pigments of photosynthetic biomembranes. — Methods in Enzymol. 148: 350–382, 1987.CrossRefGoogle Scholar
  9. Koski, V.M., Smith, J.H.C.: The isolation and spectral absorption properties of protochlorophyll from etiolated barley seedlings. — J. Amer. Chem. Soc. 70: 3558–3562, 1948.CrossRefGoogle Scholar
  10. Memon, S.A., Hou, X., Wang, L.J., Li, Y.: Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). — Acta Physiol. Plant. 31: 51–57, 2009.CrossRefGoogle Scholar
  11. Michel-Wolwertz, M.R., Brouers, M.: Phototransformation of protochlorophyllideF657 in etiochloroplasts isolated from pine cotyledons; dark reformation of this pigment-complex from a pool of ALA-protochlorophyllideF635 in the presence of NADPH. — Photosynth. Res. 1: 105–113, 1974.CrossRefGoogle Scholar
  12. Mukai, Y., Tazaki, K., Fujii, T. Yamamoto, N.: Light-independent expression of 3 photosynthtetic genes, cab, rbcS and rbcL, in coniferous plants. — Plant Cell Physiol. 33: 859–866, 1992.Google Scholar
  13. Muramatsu, S., Kojima, K., Igasaki, T., Azumi, Y. Shinohara, K.: Inhibition of the light-independent synthesis of chlorophyll in pine cotyledons at low temperature. — Plant Cell Physiol. 42: 868–872, 2001.CrossRefPubMedGoogle Scholar
  14. Papenbrock, J., Mishra, S., Mock, H.P., Kruse, E., Schmidt, E.K., Petersmann, A., Braun, H.P., Grimm, B.: Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. — Plant J. 28: 41–50, 2001.CrossRefPubMedGoogle Scholar
  15. Papenbrock, J., Grimm, B.: Regulatory network of tetrapyrrole biosynthesis — studies of intercellular signaling involved in metabolic and developmental control of plastids. — Planta 213: Shinohara, K., Murakami, A., Fujita Y.: Biochemical characteristics of thylakoid membranes in chloroplasts of darkgrown pine cotyledons. — Plant Physiol. 98: 39–43, 1992.CrossRefGoogle Scholar
  16. Tobin, E.M., Silverthorne, J.: Light regulation of geneexpression in higher plants. — Annu. Rev. Plant Physiol. 36: 569–593, 1985.CrossRefGoogle Scholar
  17. Yamamoto, N., Mukai, Y., Matsuoka, M., Kanomurakami, Y., Tanaka, Y., Ohashi, Y., Ozeki, Y., Odani, K. 1991. Lightindependent expression of cab and rbcS genes indark-grown pine seedlings. — Plant Physiol. 95: 379–383, 1991.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Plant Physiology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovak Republic
  2. 2.Biology CentreAcademy of SciencesČeské BudějoviceCzech Republic

Personalised recommendations