Advertisement

Photosynthetica

, Volume 47, Issue 3, pp 457–470 | Cite as

Modelling of carbon isotope discrimination by vegetation

  • D. Hidy
  • L. Haszpra
  • Z. Barcza
  • A. Vermeulen
  • Z. Tuba
  • Z. NagyEmail author
Original Papers

Abstract

The paper presents a simple box model simulating the temporal variation of atmospheric 13CO2 concentration, atmospheric CO2 mixing ratio and 13C content of plant material. The model is driven by observed meteorological and measured biosphere-atmosphere CO2 exchange data. The model was calibrated and validated using measurements from a Hungarian atmospheric monitoring station. The simulated atmospheric stable carbon isotope ratio data agreed well with the measured ratios considering both the magnitude and the seasonal dynamics. Observed deviations between the measured and simulated δ13Cair values were systematically negative in winters, while deviations were random in sign and smaller by an order of magnitude during periods when the vegetation was photosynthetically active. This difference, supported by a significant correlation between the deviation and modeled fossil fuel contributions to CO2 concentration, suggests the increased contribution of 13C-depleted fossil fuel CO2 from heating and the lower boundary layer heights during winter.

Additional key words

atmospheric modelling 13carbon flux data carbon isotope discrimination carbon stable isotopes discrimination 

Abbreviations

c

mixing ratio

E

transpiration rate

FT

airmixing function

g

gaseous conductance

GPP

gross primary production

L

likelihood

LE

latent heat flux

MC

average molar mass of carbon

NEE

net ecosystem exchange

NPP

net primary production

p

pressure

PBL

planetary boundary layer height

R

gas constant

rad

global radiation

RMSE

root mean square error

T

temperature

TNBL

top of the nocturnal boundary layer

TR

total ecosystem respiration

TRL

top of the residual layer

VPD

vapor pressure deficit

γ

adiabatic temperature lapse rate

δ13C–13C

isotopic abundance

Δ

discrimination against 13CO2

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldocchi, D. D., Falge, E., Gu, L.H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, J. W., Oechel, W., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. — Bull. Am. Meteorol. Soc. 82: 2415–2434, 2001.CrossRefGoogle Scholar
  2. Bowling, D.R., Pataki, D.E., Randerson J.T.: Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. — New Phytol. 178: 24–40, 2008.CrossRefPubMedGoogle Scholar
  3. Chen, B.Z., Chen, J.M., Tans, P.P., Huang, L.: Simulating dynamics of-C-13 of CO2 in the planetary boundary layer over a boreal forest region: covariation between surface fluxes and atmospheric mixing. — Tellus Series B-Chem. Phys. Meteorol. 58: 537–549, 2006.CrossRefGoogle Scholar
  4. Farquhar, G.D., von Caemmerer, S., Berry J.A.: A biochemicalmodel of photosynthetic CO2 assimilation in leaves of C3 species. — Planta 149: 78–90, 1980.CrossRefGoogle Scholar
  5. Farquhar, G.D., Oleary, M.H., Berry, J.A.: On the Relationship between carbon isotope discrimination and the inter-cellular carbon dioxide concentration in leaves. — Austr. J. Plant Physiol. 9: 121–137, 1982.CrossRefGoogle Scholar
  6. Farquhar, G.D., Ehleringer, J.R., Hubick, K.T.: Carbon isotope discrimination and photosynthesis. — Annu. Rev. Plant Physiol. 40: 503–537, 1989.CrossRefGoogle Scholar
  7. GLOBALVIEW-CO2.: Cooperative Atmospheric Data Integration Project — Carbon Dioxide. — CD-ROM, NOAA ESRL. Boulder, Colorado (Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW]), 2007.
  8. GLOBALVIEW-CO2C13.: Cooperative Atmospheric Data Integration Project - 13C of Carbon Dioxide. — CD-ROM, NOAA ESRL. Boulder, Colorado ([Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2c13/GLOBALVIEW]), 2007.
  9. Harnos, N., Tuba, Z., Szente, K.: Modelling net photosynthetic rate of winter wheat in elevated air CO2 concentracions. — Photosynthetica. 40: 293–300, 2002.CrossRefGoogle Scholar
  10. Haszpra, L., Barcza, Z., Bakwin, P.S., Berger, B.W., Davis, K.J., Weidinger, T.: Measuring system for the long-term monitoring of biosphere/atmosphere exchange of carbon dioxide. — JGR-Atmospheres 106: 3057–3069, 2001.CrossRefGoogle Scholar
  11. Haszpra, L., Barcza, Z., Davis, K.J., Tarczay, K.: Long-term tall tower carbon dioxide flux monitoring over an area of mixed vegetation. — Agri. Forest Meteorol. 132: 58–77, 2005.CrossRefGoogle Scholar
  12. Hemming, D., Yakir, D., Ambus, P., Aurela, M., Besson, C., Black, K., Buchmann, N., Burlett, R., Cescatti, A., Clement, R., Gross, P., Granier, A., Grunwald, T., Havrankova, K., Janous, D., Janssens, I.A., Knohl, A., Ostner, B.K., Kowalski, A., Laurila, T., Mata, C., Marcolla, B., Matteucci, G., Moncrieff, J., Moors, E.J., Osborne, B., Pereira, J.S., Pihlatie, M., Pilegaard, K., Ponti, F., Rosova, Z., Rossi, F., Scartazza, A., Vesala, T.: Pan-European delta C-13 values of air and organic matter from forest ecosystems. — Global Change Biol. 11: 1065–1093, 2005.CrossRefGoogle Scholar
  13. Jones, H.G.: Plants and microclimates. — In: Jones, H.G. (ed.):: Plants and Microclimates. Pp.192–200. Cambridge Univ. Press, Cambridge 1992.Google Scholar
  14. Lai, C.T., Ehleringer, J.R., Tans, P., Wofsy, S.C., Urbanski, S.P., Hollinger, D.Y.: Estimating photosynthetic C-13 discrimination in terrestrial CO2 exchange from canopy to regional scales. — Global Biogeochem. Cycles. 18: GB1041, 2004.CrossRefGoogle Scholar
  15. Meijer, H.A.J., Smid, H.M., Perez, E., Keizer, M.G.: Isotopic Characterisation of Anthropogenic CO2 Emissions Using Isotopic and Radiocarbon Analysis. — Phys. Chem. Earth 21: 483–487, 1996.CrossRefGoogle Scholar
  16. Mosegaard, K., Tarantola, A.: Monte Carlo sampling of solutions to inverse problems. — JGR-Solid Earth 100: 12431–12447, 1995.CrossRefGoogle Scholar
  17. Olivier, J.G.J., Berdowski, J.J.M.: Global emissions sources and sinks. — In: Berdowski, J., Guicherit, R., Heij, B.J. (ed.): Climate System. Pp. 33–78. A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse 2001.Google Scholar
  18. Pieterse, G., Vermeulen, A.T., Baker, I.T., Denning, A.S.: Lagrangian transport modelling for CO2 using two different biosphere models. — Atmos. Chem. Phys. Discuss 8: 4117–4154, 2008.CrossRefGoogle Scholar
  19. Schulze, E.D.: Biological control of the terrestrial carbon sink. — Biogeosciences. 3: 147–166, 2006.CrossRefGoogle Scholar
  20. Stull, R.B. (ed.): An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht 1988.Google Scholar
  21. Suits, N.S., Denning, A.S., Berry, J.A., Still, C.J., Kaduk, J., Miller, J.B., Baker, I.T.: Simulation of carbon isotope discrimination of the terrestrial biosphere. — Global Biogeochem. Cycles 19: GB1017, 2005.CrossRefGoogle Scholar
  22. Van Oijen, M., Rougier, J., Smith, R.: Bayesian calibration of process-based forest models: bridging the gap between models and data. — Tree Physiology 25: 915–927, 2005.PubMedGoogle Scholar
  23. Vermeulen, A.T., Pieterse, G., Hensen, A., van den Bulk, W.C.M., Erisman, J.W.: COMET: a Lagrangian transport model for greenhouse gas emission estimation — forward model technique and performance for methane. — Atmos. Chem. Phys. Discuss. 6: 8727–8779, 2006.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • D. Hidy
    • 1
  • L. Haszpra
    • 2
  • Z. Barcza
    • 3
  • A. Vermeulen
    • 4
  • Z. Tuba
    • 5
  • Z. Nagy
    • 1
    Email author
  1. 1.Institute of Botany and EcophysiologySzent István UniversityGödöllőHungary
  2. 2.Hungarian Meteorological ServiceBudapestHungary
  3. 3.Department of MeteorologyEötvös Loránd UniversityBudapestHungary
  4. 4.Department of. Air Quality & Climate ChangeEnergy Research Center of the NetherlandsPettenThe Netherlands
  5. 5.Plant Ecological Research Group at Botanical and Ecophysiological InstituteGödöllő Páter 1.Hungary

Personalised recommendations