Advertisement

Photosynthetica

, 47:363 | Cite as

Shade mitigates photoinhibition and enhances water use efficiency in kiwifruit under drought

  • G. Montanaro
  • B. Dichio
  • C. Xiloyannis
Original Papers

Abstract

We tested the hypotheses that a reduction of incident light of 50 % over sun-acclimated leaves of water stressed kiwifruit (Actinidia deliciosa var. deliciosa) would (1) reduce stomatal limitations to carbon supply and (2) mitigate the inactivation of the primary photochemistry associated with photosystem (PS) II, thereby this increases carbon gain and water-use efficiency (WUE). Groups of field-grown vines were either shaded or left naturally exposed and subjected to progressive water stress in order to study moderately and severely droughted vines, while other groups were well irrigated. Daily variations in leaf gas exchange and midday chlorophyll (Chl) a fluorescence were determined once plants had −0.6 MPa (moderate stress) and −1.0 MPa pre-down leaf water potential (severe stress). Variations in Chl pigment content and specific leaf area (SLA) are also discussed. Results reveal that 50 % shade application maintained efficiency of PSII close to 0.8 even under severe drought so that to prevent its large decline (0.65) recorded in sunlit leaves. Under moderate stress level stomata behaviour dominated upon metabolic impairments of PSII. Reduction of irradiance increased WUE (15–20 %) in droughted vines, representing a valuable intervention to save photosynthetic apparatus and improve WUE in vines experiencing typical Mediterranean summer stresses.

Additional keywords

carbon gain excessive radiation photosynthesis semi-arid condition shade stomatal limitation water use efficiency 

Abbreviations

Chl

chlorophyll

E

leaf transpiration

F0

minimal fluorescence of dark-adapted state

Fm

maximum fluorescence of dark-adapted leaves

gs

stomatal conductance

PN

net photosynthetic rate

PPFD

photosynthetic photon flux density

PSII

photosystem II

SLA

specific leaf area

VPD

leaf-to-air vapour pressure deficit

Ψw

leaf water potential

References

  1. Alarcón, J.J., Ortuňo, M.F., Nicolás, E., Navarro, A., Torrecillasa, A.: Improving water-use efficiency of young lemon trees by shading with aluminised-plastic nets. — Agric. Water Manag. 82: 387–398, 2006.CrossRefGoogle Scholar
  2. Anyia, A.O., Herzog, H.: Water-use efficiency, leaf area and leaf gas exchange of cowpeas under mid-season drought. — Eur. J. Agron. 20: 327–339, 2004.CrossRefGoogle Scholar
  3. Bargali, K., Tewari, A.: Growth and water relation parameters in drought-stressed Coriaria nepalensis seedlings. — J. Arid Environ. 58: 505–512, 2004.CrossRefGoogle Scholar
  4. Buwalda, J.G., Green, T.G.A., Curtis, J.P.: Canopy photosynthesis and respiration of kiwifruit (Actinidia deliciosa var. Deliciosa) vines growing in the field. — Tree Physiol. 10: 327–341, 1992.PubMedGoogle Scholar
  5. Davies, W.J., Wilson, J.A., Sharp, R.E., Osonubi, O.: Control of stomatal behaviour in water-stressed plants. — In: Jarvis, P.G., Mansfield, T.A. (ed.): Stomatal Physiology. Pp. 163–185. Cambridge University Press, Cambridge — London — New York — New Rochelle — Melbourne — Sydney 1981.Google Scholar
  6. Demmig-Adams, B., Adams, W.W., III: Photoprotection and other response of plants to high light stress. — Ann. Rev. Plant Physiol. Molec. Biol. 43: 599–626, 1992.CrossRefGoogle Scholar
  7. Dobrowski, S.Z., Pushnik, J.C., Zarco-Tejada, P.J., Ustin, S.L.: Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale. — Remote Sens. Environ. 97: 403–414, 2005.CrossRefGoogle Scholar
  8. FAO Statistic Division: http://faostat.fao.org/, access date March 18, 2008.
  9. Ferguson, A.R.: Kiwifruit: a botanical review. — Hort. Rev. 6: 1–64, 1984.Google Scholar
  10. Fernández, R.J., Reynolds, J.F.: Potential growth and drought tolerance of eight desert grasses: lack of a trade-off? — Oecologia 123: 90–98, 2000.CrossRefGoogle Scholar
  11. Flexas, J., Bota, J., Cifre, J., Escalona, J.M., Galmés, J., Gulías, J., Lefi, E.K., Martínez-Cañellas, S.F., Moreno, M.T., Ribas-Carbó, M., Riera, D., Sampol, B., Medrano, H.: Understanding down-regulation of photosynthesis under water stress: future prospects and searching for physiological tools for irrigation management. — Ann. Appl. Biol. 144: 273–283, 2004.CrossRefGoogle Scholar
  12. Flexas, J., Bota, J., Galmés, J., Medrano, H., Ribas-Carbó, M.: Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. — Physiol. Plant. 127: 343–352, 2006.CrossRefGoogle Scholar
  13. Flexas, J., Medrano, H.: Drought-inhibition of photosynthesis in C3 plants stomatal and non-stomatal limitations revisited. — Ann. Bot. 89: 183–189, 2002.CrossRefPubMedGoogle Scholar
  14. Goudriaan, J., van Laar, H.H.: Modelling Potential Crop Growth Processes. Pp. 238. Kluwer Academic Publ., Dordrecht — Boston — London, 1994.Google Scholar
  15. Gratani, L., Varone, I.: Adaptive photosynthetic strategies of the Mediterranean maquis species according to their origin. — Photosynthetica 42: 551–558, 2004.CrossRefGoogle Scholar
  16. Green, S.R., Kirkham, M.B., Clothier, B.E.: Root uptake and transpiration: From measurements and models to sustainable irrigation. — Agric. Water Manag. 86: 165–176, 2006.CrossRefGoogle Scholar
  17. Greer, D.H., Laing, W.A.: Photoinhibition of photosynthesis in intact kiwifruit (Actinidia deliciosa) leaves changes in susceptibility to photoinhibition and recovery during the growth season. — Planta 186: 418–425, 1992.CrossRefGoogle Scholar
  18. Greer, D.H., Halligan, E.A.: Photosynthetic and fluorescence light response for kiwifruit (Actinidia deliciosa) leaves for different stages of development on vines grown at two different photon flux density. — Aust. J. Plant Physiol. 28: 373–382, 2001.Google Scholar
  19. Gregoriou, K., Pontikis, K., Vemmos, S.: Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). — Photosynthetica 45: 172–181, 2007.CrossRefGoogle Scholar
  20. Gucci, R., Massai R., Xiloyannis, C., Flore, J.A.: The effect of drought and vapour pressure deficit on gas exchange of young kiwifruit (Actinidia deliciosa var. Deliciosa) vines. — Ann. Bot. 77: 605–613, 1996.CrossRefGoogle Scholar
  21. Jifon, J.L., Syvertsen, J.P.: Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. — Tree Physiol. 23: 119–127, 2003.PubMedGoogle Scholar
  22. Judd, M.J., Mc Aneney, K.J., Wilson, K.S.: Influence of water-stress on kiwifruit growth. — Irrig. Sci. 10: 303–311, 1989.CrossRefGoogle Scholar
  23. Khan, S.H., Rose, R., Haase, D.L., Sabin, T.E.: Effects of shade on morphology, chlorophyll concentration, and chlorophyll fluorescence of four Pacific Northwest conifer species. — New Forests 19: 171–186, 2000.CrossRefGoogle Scholar
  24. Knapp, A.K., Smith, W.K.: Stomatal and photosynthetic responses to variable sunlight. — Physiol. Plant. 78: 160–165, 1990.CrossRefGoogle Scholar
  25. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis — the basics. — Ann. Rev. Plant Physiol. Molec. Biol. 42: 313–349, 1991.CrossRefGoogle Scholar
  26. Lösch, R., Tenhunen, J.D.: Stomatal responses to humidity — phenomenon and mechanism. — In: Jarvis, P.G., Mansfield, T.A. (ed.): Stomatal Physiology. Pp. 137–161. Cambridge University Press, Cambridge — London — New York — New Rochelle — Melbourne — Sydney 1981.Google Scholar
  27. Mansfield, T.A., Travis, A.J., Jarvis, R.J.: Responses to light and carbon dioxide. — In: Jarvis, P.G., Mansfield, T.A. (ed.): Stomatal Physiology. Pp. 119–135. Cambridge University Press, Cambridge — London — New York — New Rochelle — Melbourne — Sydney 1981.Google Scholar
  28. Masojídek, J., Trivedi, S., Halshaw, L., Alexiou, A., Hall, D.O.: The synergistic effect of drought and light stresses in sorghum and pearl millet. — Plant Physiol. 96: 198–207, 1991.CrossRefPubMedGoogle Scholar
  29. Maxwell, K. Johnson, G.N.: Chlorophyll fluorescence — a practical guide. — J. Exp. Bot. 51: 659–668, 2000.CrossRefPubMedGoogle Scholar
  30. Montanaro, G., Dichio, B., Xiloyannis, C., Celano, G.: Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). — Plant Sci. 170: 520–527, 2006.CrossRefGoogle Scholar
  31. Montanaro, G., Dichio, B., Xiloyannis, C.: Response of photosynthetic machinery of field-grown kiwifruit under Mediterranean conditions during drought and re-watering. — Photosynthetica 45: 533–540, 2007.CrossRefGoogle Scholar
  32. Moran, R.: Formulas for determination of chlorophyllous pigments extracted with N,N-dimethylformamide. — Plant Physiol. 69: 1376–1381, 1982.CrossRefPubMedGoogle Scholar
  33. Nicolás, E., Torrecillas, A., Dell Amico, J., Alarcón, J.J.: Sap flow, gas exchange, and hydraulic conductance of young apricot trees growing under a shading net and different water supplies. — J. Plant Physiol. 162: 439–447, 2005.CrossRefPubMedGoogle Scholar
  34. Parry, M.A.J., Flexas, J., Medrano, H.: Prospects for crop production under drought: research priorities and future directions. — Ann. Appl. Biol. 147, 211–226, 2005.CrossRefGoogle Scholar
  35. Powles, S.B.: Photoinhibition of photosynthesis induced by visible light. — Ann. Rev. Plant Physiol. 35: 15–44, 1984.Google Scholar
  36. Quero, J.L., Villar, R., Marañón, T., Zamora, R.: Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses. — New Phytol. 170: 819–833, 2006.CrossRefPubMedGoogle Scholar
  37. Sack, L., Grubb, P.J.: The combined impacts of deep shade and drought on the growth and biomass allocation of shade-tolerant woody seedlings. — Oecologia 131: 175–185, 2002.CrossRefGoogle Scholar
  38. Šircelj, H., Tausz, M., Grill, D., Batič, F.: Biochemical responses in leaves of two apple tree cultivars subjected to progressing drought. — J. Plant Physiol. 162: 1308–1318, 2005.CrossRefPubMedGoogle Scholar
  39. Snelgar, W.P., Hopkirk, G.: Effect of overhead shading on yield and fruit-quality of kiwifruit (Actinidia deliciosa). — J. Hortic. Sci. 63: 731–742, 1988.Google Scholar
  40. Syvertsen, J.P.: Integration of water-stress in fruit-trees. — Hortsci. 20: 1039–1043, 1985.Google Scholar
  41. Tardieu, F., Simonneau, T.: Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. — J. Exp. Bot. 49: 419–432, 1998.CrossRefGoogle Scholar
  42. Turner, N.C.: Techniques and experimental approaches for the measurement of plant water status. — Plant Soil 58: 339–366, 1981.CrossRefGoogle Scholar
  43. Valladares, F., Arrieta, S., Aranda, I., Lorenzo, D., Sánchez-Gómez, D., Tena, D., Suárez, F., Pardos, J.A.: Shade tolerance, photoinhibition sensitivity and phenotypic plasticity of Ilex aquifolium in continental Mediterranean sites. — Tree Physiol. 25: 1041–1052, 2005.PubMedGoogle Scholar
  44. Wentworth, M., Murchie, E.H., Gray, J.E., Villegas, D., Pastenes, C., Pinto, M., Horton, P.: Differential adaptation of two varieties of common bean to abiotic stress. II. Acclimation of photosynthesis. — J. Exp. Bot. 57: 699–709, 2006.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Crop Systems, Forestry and Environmental SciencesUniversity of BasilicataPotenzaItaly

Personalised recommendations