, Volume 47, Issue 2, pp 184–190 | Cite as

Relationship between specific leaf area, leaf thickness, leaf water content and SPAD-502 readings in six Amazonian tree species

  • R.A. Marenco
  • S.A. Antezana-Vera
  • H.C.S. Nascimento
Original Paper


The aim of this work was to assess the effect of leaf thickness, leaf succulence (LS), specific leaf area (SLA), specific leaf mass (Ws) and leaf water content (LWC) on chlorophyll (Chl) meter values in six Amazonian tree species (Carapa guianensis, Ceiba pentandra, Cynometra spruceana, Pithecolobium inaequale, Scleronema micranthum and Swietenia macrophylla). We also tested the accuracy of a general calibration equation to convert Minolta Chl meter (SPAD-502) readings into absolute Chl content. On average, SPAD values (x) increased with fresh leaf thickness (FLT [μm] = 153.9 + 0.98 x, r 2 = 0.06**), dry leaf thickness (DLT [μm] = 49.50 + 1.28 x, r 2 = 0.16**), specific leaf mass (Ws [g (DM) m−2] = 6.73 + 1.31 x, r 2 = 0.43**), and leaf succulence (LS [g(FM)] m−2 = 94.2 + 1.58 x, r 2 = 0.19**). However, a negative relationship was found between SPAD values and either specific leaf area [SLA (m2 kg−1) = 35.1 − 0.37 x, r 2 = 0.38**] or the leaf water content (LWC [%]= 80.0 − 0.42 x, r 2 = 0.58**). Leaf Chl contents predicted by the general calibration equation significantly differed (p<0.01) from those estimated by species-specific calibration equations. We conclude that to improve the accuracy of the SPAD-502 leaf thickness and LWC should be taken into account when calibration equations are to be obtained to convert SPAD values into absolute Chl content.

Additional key words

Carapa guianensis Ceiba pentandra Pithecolobium inaequale Scleronema micranthum Swietenia macrophylla 





dry leaf thickness


dry matter


fresh leaf thickness


fresh matter


leaf succulence


leaf water content


specific leaf area


Minolta chlorophyll meter


specific leaf mass


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnon, D.I.: Copper enzymes in isolated chloroplasts: Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.PubMedCrossRefGoogle Scholar
  2. Araus, J.L., Amaro, T., Zuhair, Y., Nachit, M.M.: Effect of leaf structure and water status on carbon isotope discrimination in field-grown durum wheat.-Plant Cell Environ. 20: 1484–1494, 1997.CrossRefGoogle Scholar
  3. Björkman, O., Demmig, B.: Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins.-Planta 170: 489–504, 1987.CrossRefGoogle Scholar
  4. Boardman, N.K.: Comparative photosynthesis of sun and shade plants.-Annu. Rev. Plant Physiol. 28: 355–377, 1977.CrossRefGoogle Scholar
  5. Bort, J., Araus, J.L., Hazzam, H., Grando, S., Ceccarelli, S.: Relationships between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley.-Plant Physiol. Biochem. 36: 889–897, 1998.CrossRefGoogle Scholar
  6. Campbell, R.J., Mobley, K.N., Marini, R.P., Pfeiffer, D.G.: Growing conditions alter the relationship between SPAD-501 values and apple leaf chlorophyll.-Hortscience 25: 330–331, 1990.Google Scholar
  7. Castelli, F., Contillo, R., Miceli, F.: Non-destructive determination of leaf chlorophyll content in four crop species.-J. Agron. Crop Sci. 177: 275–283, 1996.CrossRefGoogle Scholar
  8. Chang, S.X., Robison, D.J.: Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter.-For. Ecol. Manage. 181: 331–338, 2003.CrossRefGoogle Scholar
  9. Chapman, S.C., Barreto, H.J.: Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth.-Agron. J. 89: 557–562, 1997.Google Scholar
  10. Dwyer, L.M., Tollenaar, M., Houwing, L.: A nondestructive method to monitor leaf greenness in corn.-Can. J. Plant Sci. 71: 505–509, 1991.Google Scholar
  11. Fanizza, G., Dellagatta, C., Bagnulo, C.: A non-destructive determination of leaf chlorophyll in Vitis vinifera.-Ann. Appl. Biol. 119: 203–205, 1991.CrossRefGoogle Scholar
  12. Fotovat, R., Valizadeh, M., Toorchi, M.: Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions.-J. Food Agr. Environ. 5: 225–227, 2007.Google Scholar
  13. Fritschi, F.B., Ray, J.D.: Soybean leaf nitrogen, chlorophyll content, and chlorophyll a/b ratio.-Photosynthetica 45: 92–98, 2007.CrossRefGoogle Scholar
  14. Gáborčík, N.: Relationship between contents of chlorophyll (a+b) (SPAD values) and nitrogen of some temperate grasses.-Photosynthetica 41: 285–287, 2003.CrossRefGoogle Scholar
  15. Garnier, E., Laurent, G.: Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species.-New Phytol. 128: 725–736, 1994.CrossRefGoogle Scholar
  16. Gratani, L.: A nondestructive method to determine chlorophyll content of leaves.-Photosynthetica 26: 469–473, 1992.Google Scholar
  17. Jifon, J. L., Syvertsen, J. P., Whaley, E.: Growth environment and leaf anatomy affect nondestructive estimates of chlorophyll and nitrogen in Citrus sp. leaves.-J. Amer. Soc. Hort. Sci. 130: 152–158, 2005.Google Scholar
  18. Marenco, R.A., Santos, A.M.B.: Crop rotation reduces weed competition and increases chlorophyll concentration and yield of rice.-Pesq. Agropec. Bras. 34: 1881–1887, 1999.CrossRefGoogle Scholar
  19. Markwell, J., Osterman, J.C., Mitchell, J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter.-Photosynth. Res. 46: 467–472, 1995.CrossRefGoogle Scholar
  20. Marquard, R.D., Tipton, J.L.: Relationship between extractable chlorophyll and an in situ method to estimate leaf greenness.-Hortscience 22: 1327, 1987.Google Scholar
  21. Martinez, D.E., Guiamet, J.J.: Distortion of the SPAD-502 chlorophyll meter readings by changes in irradiance and leaf water status.-Agronomie 24: 41–46, 2004.CrossRefGoogle Scholar
  22. McMillen, G.G., McClendon, J.H.: Dependence of photosynthetic rates on leaf density thickness in deciduous woody plants grown in sun and shade.-Plant Physiol. 72: 674–678, 1983.PubMedCrossRefGoogle Scholar
  23. Nageswara Rao, R.C., Talwar, H.S., Wright, G.C.: Rapid assessment of specific leaf area and leaf nitrogen in peanut (Arachis hypogaea L.) using a chlorophyll meter.-J. Agron. Crop Sci. 186: 175–182, 2001.CrossRefGoogle Scholar
  24. Nigam, S.N., Aruna, R.: Stability of soil plant analytical development (SPAD) chlorophyll meter reading (SCMR) and specific leaf area (SLA) and their association across varying soil moisture stress conditions in groundnut (Arachis hypogaea L.).-Euphytica 160: 111–117, 2008.CrossRefGoogle Scholar
  25. Niu, G., Rodriguez, D.S., Rodriguez, L., Mackay, W.: Effect of water stress on growth and flower yield of big bend blue-bonnet.-Horttechnol. 17: 557–560, 2007.Google Scholar
  26. Rabinowitch, E. I.: Photosynthesis and related processes.-Interscience Inc, New York 1951.Google Scholar
  27. Richardson, A.D., Duigan, S.P., Berlyn, G.P.: An evaluation of noninvasive methods to estimate foliar chlorophyll content.-New Phytol. 153: 185–194, 2002.CrossRefGoogle Scholar
  28. Schlemmer, M.R., Francis, D.D., Shanahan, J.F., Schepers, J.S.: Remotely measuring chlorophyll content in corn leaves with differing nitrogen levels and relative water content.-Agron. J. 97: 106–112, 2005.CrossRefGoogle Scholar
  29. Steel, R.G.D., Torrie, J.H.: Principles and procedures of statistics: a biometrical approach.-McGraw-Hill, New York 1981.Google Scholar
  30. Turner, F.T., Jund, M.F.: Assessing the nitrogen requirements of rice crops with a chlorophyll meter.-Aust. J. Exp. Agr. 34: 1001–1005, 1994.CrossRefGoogle Scholar
  31. Uddling, J., Gelang-Alfredsson, J., Piikki, K., Pleijel, H.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings.-Photosynth. Res. 91: 37–46, 2007.PubMedCrossRefGoogle Scholar
  32. Vogelmann, T.C.: Plant tissue optics.-Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 231–251, 1993.CrossRefGoogle Scholar
  33. Wang, Q.B., Chen, J.J., Stamps, R.H., Li, Y.C.: Correlation of visual quality grading and SPAD reading of green-leaved foliage plants.-J. Plant Nut. 28: 1215–1225, 2005.CrossRefGoogle Scholar
  34. Yamamoto, A., Nakamura, T., Adu-Gyamfi, J.J., Saigusa, M.: Relationship between chlorophyll content in leaves of sorghum and pigeonpea determined by extraction method and by chlorophyll meter (SPAD-502).-J. Plant Nut. 25: 2295–2301, 2002.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • R.A. Marenco
    • 1
  • S.A. Antezana-Vera
    • 2
  • H.C.S. Nascimento
    • 3
  1. 1.Instituto Nacional de Pesquisas da Amazônia (INPA-CPST)ManausBrazil
  2. 2.INPAManaus AMBrazil
  3. 3.Botany Graduate ProgramINPAManaus AMBrazil

Personalised recommendations