, Volume 47, Issue 1, pp 26–32 | Cite as

Corticular photosynthesis: A mechanism to enhance shrub expansion in coastal environments

  • J.K. Vick
  • D. R. YoungEmail author
Original Papers


Myrica cerifera L. (Myricaceae), the dominant woody species on many barrier islands along the southeastern coast of the United States, is expanding into grass-dominated, mesic, interdunal depressions where it forms dense thickets. Expansion may be attributed to a symbiotic nitrogen fixation with the bacterium Frankia, an evergreen leaf habit and, possibly, corticular photosynthesis (CP, i.e. refixation of respired CO2, %ref). We quantified seasonal variations in CP characteristics in first through fifth order branches of M. cerifera to determine the extent and relevance of CP to shrub expansion in coastal environments. Maximum mean %ref was 110±39 % of CO2 efflux in the dark (R D) in first order branches during winter. Minimum %ref was 18±3 % in fifth order branches during summer. Variations in %ref paralleled changes in incident photosynthetic photon flux density (PPFD). As incident PPFD attenuated with increasing branch order, %ref decreased. A less dense canopy in winter led to increased PPFD and increases in %ref. Total chlorophyll (Chl) content and Chl a/b ratios were consistent with shade acclimation as branch order increased. CP may be a mechanism to enhance M. cerifera shrub expansion because of the potential increase in whole plant carbon use efficiency and water use efficiency attributed to refixation of respired CO2.

Additional key words

attenuation barrier islands chlorophyll CO2 refixation gross photosynthesis respiration shrub expansion 



corticular photosynthesis


carbon use efficiency


gross photosynthesis


photosynthetic photon flux density


CO2 efflux in the dark


CO2 efflux under irradiation


water use efficiency


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archer, S., Schimel, D.S., Holland, E.A.: Mechanisms of shrubland expansion —land use, climate or CO2?-Climatic Change 29: 91–99 1995.CrossRefGoogle Scholar
  2. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1–15 1949.PubMedCrossRefGoogle Scholar
  3. Aschan, G., Pfanz, H.: Non-foliar photosynthesis — a strategy of additional carbon acquisition.-Flora 198: 81–97 2003.Google Scholar
  4. Brantley, S.T., Young, D.R.: Leaf-area index and light attenuation in rapidly expanding shrub thickets.-Ecology 88: 524–530 2007.PubMedCrossRefGoogle Scholar
  5. Briggs, J.M., Knapp, A.K., Blair, J.M., Heisler, J.L., Hoch, G.A., Lett, M.S., McCarron, J.K.: An ecosystem in transition. Causes and consequences of the conversion of mesic grassland to shrubland.-BioScience 55: 243–254 2005.CrossRefGoogle Scholar
  6. Cernusak, L.A., Marshall, J.D.: Photosynthetic refixation in branches of Western White Pine.-Funct. Ecol. 14: 300–311, 2000.CrossRefGoogle Scholar
  7. Cernusak, L.A., Marshall, J.D., Comstock, J.P., Balster, N.J.: Carbon isotope discrimination in photosynthetic bark.-Oecologia 128: 24–35 2001.CrossRefGoogle Scholar
  8. Coe, J.M., McLaughlin, S.B.: Winter season corticular photosynthesis in Cornus florida, Acer rubrum, Quercus alba, and Liriodendron tulipifera.-Forest Sci. 26: 561–566 1980.Google Scholar
  9. Damesin, C.: Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica: from the seasonal pattern to an annual balance.-New Phytol. 158: 465–475 2003.CrossRefGoogle Scholar
  10. Guo, Y.-P., Guo, D.-P., Zhou, H.-F., Hu, M.-J., Shen, Y.-G.: Photoinhibition and xanthophyll cycle activity in bayberry (Myrica rubra) leaves induced by high irradiance.-Photosynthetica 44: 439–446 2006.CrossRefGoogle Scholar
  11. Krovetz, D.K., Porter, J.H., Spitler, J.R., Smith, P.H.: Meteorological measurements of the Virginia Coast Reserve LTER.-Data of the Virginia Coast Reserve LTER Project VCR 9708, 2006.Google Scholar
  12. Langenfeld-Heyser, R.: CO2 fixation in stem slices of Picea abies (L.) Karst: microautoradiographic studies.-Trees 3: 24–32 1989.CrossRefGoogle Scholar
  13. Langenfeld-Heyser, R., Schella, B., Buschmann, K., Speck, F.: Microautoradiographic detection of CO2 fixation in lenticel chlorenchyma of young Fraxinus excelsior L. stems in early spring.-Trees 10: 255–260 1996.Google Scholar
  14. Levy, P.E., Jarvis, P.G.: Stem CO2 fluxes in two Sahelian shrub species (Guiera senegalensis and Combretum micranthum).-Funct. Ecol. 12: 107–116 1998.CrossRefGoogle Scholar
  15. Lewandowska, M., Jarvis, P.G.: Changes in chlorophyll and carotenoid content, specific leaf area and dry-weight fraction in Sitka spruce, in response to shading and season.-New Phytol. 79: 247–256 1977.CrossRefGoogle Scholar
  16. Manetas, Y.: Probing corticular photosynthesis through in vivo chlorophyll fluorescence measurements: evidence that high internal CO2 levels suppress electron flow and increase the risk of photoinhibition.-Physiol. Plant. 120: 509–517 2004a.PubMedCrossRefGoogle Scholar
  17. Manetas, Y.: Photosynthesizing in the rain: beneficial effects of twig wetting on corticular photosynthesis through changes in the periderm optical properties.-Flora 199: 334–341 2004b.Google Scholar
  18. Nilsen, E.T.: Partitioning growth and photosynthesis between leaves and stems during nitrogen limitation in Spartium junceum.-Amer. J. Bot. 79: 1217–1223, 1992.CrossRefGoogle Scholar
  19. Nilsen, E.T., Bao, Y.: The influence of water stress on stem and leaf photosynthesis in Glycine max and Sparteum junceum (Leguminosae).-Amer. J. Bot. 77: 1007–1015, 1990.CrossRefGoogle Scholar
  20. Nilsen, E.T., Sharifi, M.R.: Carbon isotopic composition of legumes with photosynthetic stems from Mediterranean and desert habitats.-Amer. J. Bot. 84: 1707–1713, 1997.CrossRefGoogle Scholar
  21. O’Leary, M.H.: Carbon isotopes in photosynthesis. Fractional techniques may reveal new aspects of carbon dynamics in plants.-BioScience 38: 328–336 1988.CrossRefGoogle Scholar
  22. Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C., Loose, M.: Ecology and ecophysiology of tree stems: corticular and wood photosynthesis.-Naturwissenschaften 89: 147–162 2002.PubMedCrossRefGoogle Scholar
  23. Rachmilevitch, S., Cousins, A.B., Bloom, A.J.: Nitrate assimilation in plant shoots depends on photorespiration.-Proc. nat. Acad. Sci. USA 101: 11506–11510 2004.PubMedCrossRefGoogle Scholar
  24. Šesták, Z.: Determination of chlorophylls a and b.-In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production: Manual of Methods. Pp. 672–701. Dr W Junk Publ., The Hague 1971.Google Scholar
  25. Šesták, Z.: Chlorophylls and carotenoids during leaf ontogeny.-In: Šesták, Z. (ed.): Photosynthesis During Leaf Development. Pp. 76–106. Dr W Junk Publ., Dordrecht-Boston-Lancaster 1985.Google Scholar
  26. Shao, G., Shugart, H.H., Young, D.R.: Simulation of transpiration sensitivity to environmental changes for shrub (Myrica cerifera) thickets on a Virginia barrier island.-Ecol. Model. 78: 235–248 1995.CrossRefGoogle Scholar
  27. Sturm, M., Schimel, J., Michaelson, G., Welker, J.M., Oberbauer, S.F., Liston, G.E., Fahnestock, J., Romanovsky, V.E.: Winter biological processes could help convert arctic tundra to shrubland.-BioScience 55: 17–26 2005.CrossRefGoogle Scholar
  28. Teskey, R.O., McGuire, M.A.: CO2 transported in xylem sap affects CO2 efflux from Liquidambar styraciflua and Platanus occidentalis stems, and contributes to observed wound respiration phenomena.-Trees 19: 357–362 2005.CrossRefGoogle Scholar
  29. Wittmann, C., Aschan, G., Pfanz, H.: Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime.-Basic appl. Ecol. 2: 145–154 2001.CrossRefGoogle Scholar
  30. Wittmann, C., Pfanz, H., Loreto, F., Centritto, M., Pietrini, F., Alessio, G.: Stem CO2 release under illumination: corticular photosynthesis, photorespiration or inhibition of mitochondrial respiration?-Plant Cell Environ. 29: 1149–1158, 2006.PubMedCrossRefGoogle Scholar
  31. Young, D.R.: Photosynthetic characteristics and potential moisture stress for the actinorhizal shrub, Myrica cerifera (Myricaceae), on a Virginia Barrier Island.-Amer. J. Bot. 79: 2–7 1992.CrossRefGoogle Scholar
  32. Young, D.R., Porter, J.H., Bachmann, C.M., Shao, G., Fusina, R.A., Bowles, J.H., Korwan, D., Donato, T.F.: Cross-scale patterns in shrub thicket dynamics in the Virginia barrier complex.-Ecosystems 10: 854–863 2007.CrossRefGoogle Scholar
  33. Young, D.R., Sande, E., Peters, G.A.: Spatial relationships of Frankia and Myrica cerifera on a Virginia, USA Barrier Island.-Symbiosis 12: 209–220 1992.Google Scholar
  34. Young, D.R., Shao, G.F., Porter, J.H.: Spatial and temporal growth dynamics of barrier island shrub thickets.-Amer. J. Bot. 82: 638–645 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of BiologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations