, Volume 46, Issue 2, pp 222–231 | Cite as

Seasonal water-use efficiency and chlorophyll fluorescence response in alpha grass (Stipa tenacissima L.) is affected by tussock size

  • D. A. Ramírez
  • F. Valladares
  • F. Domingo
  • J. Bellot
Original Papers


Twelve randomly chosen Stipa tenacissima L. individuals were grouped into three tussock size classes, small (ST), medium (MT), and large (LT) with 5.6±0.8, 34.1±4.2, and 631.9±85.8 g of dry green foliar matter, respectively, in three plots with different S. tenacissima cover. Instantaneous (WUEi) and long-term (WUEl) water-use efficiencies were measured in two seasons of contrasting volumetric soil water content (early winter 21.0±0.8 % and summer 5.8±0.3 %). Maximum photochemical efficiency of photosystem 2 and stomatal conductance in summer assessed the extent of water and irradiance stress in tussocks of different size. WUEi was lower in MT and ST “water spender” strategies than in LT during the high water-availability season. In summer net photosynthetic rate and WUEi were higher and photoinhibition was lower in LT than in MT and ST. Significant spatial variability was found in WUEi. Water uptake was competitive in stands with denser alpha grass and more water availability in summer, reducing their WUEi. However, WUEl showed a rising tendency when water became scarce. Thus it is important to explicitly account for plant size in ecophysiological studies, which must be combined with demographic information when estimating functional processes at stand level in sequential scaling procedures.

Additional key words

leaf area index net photosynthetic rate photoinhibition photosystem 2 plant size semiaridity stomatal conductance transpiration rate water stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balaguer, L., Pugnaire, F.I., Martinez-Ferri, E., Armas, C., Valladares, F., Manrique, E.: Ecophysiological significance of chlorophyll loss and reduced photochemical efficiency under extreme aridity in Stipa tenacissima L.-Plant Soil 240: 343–352, 2002.CrossRefGoogle Scholar
  2. Cabuslay, G.S., Ito, O., Alejar, A.A.: Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit.-Plant Sci. 163: 815–827, 2002.CrossRefGoogle Scholar
  3. Calderini, D.F., Dreccer, M.F., Slafer, G.A.: Consequences of breeding on biomass, radiation interception and radiation-use efficiency in wheat.-Field Crops Res. 52: 271–281, 1997.CrossRefGoogle Scholar
  4. Chen, S., Bay, Y., Zhang, L., Han, X.: Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China.-Environ. exp. Bot. 53: 65–75, 2005.CrossRefGoogle Scholar
  5. Chirino, E.: Influencia de las precipitaciones y de la cubierta vegetal en el balance hídrico superficial y en la recarga de acuíferos en clima semiárido.-PhD Thesis. University of Alicante, Alicante 2003.Google Scholar
  6. Christensen, J.H., Hewitson, B., Busuioc, A., Chen, A., Gao, X., Held, I., Jones, R., Kolli, R.K., Kwon, W.-T., Laprise, R., Rueda, V.M., Mearns, L., Menéndez, C.G., Räisänen, J., Rinke, A., Whetton, A.S.P.: Regional climate projections. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.-In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (ed.): Climate Change 2007: The Physical Science Basis. Pp. 847–943, Cambridge University Press, Cambridge-New York 2007.Google Scholar
  7. Clifton-Brown, J.C., Lewandowski, I.: Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply.-Ann. Bot. 86: 191–200, 2000.CrossRefGoogle Scholar
  8. Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer, P.H., Tu, K.P.: Stable isotopes in plant ecology.-Annu. Rev. Ecol. Systematics 33: 507–559, 2002.CrossRefGoogle Scholar
  9. Domingo, F., Van Gardingen, P.R., Brenner, A.J.: Boundary layer conductance of two native species in southeast Spain.-Agr. Forest Meteorol. 81: 179–199, 1996.CrossRefGoogle Scholar
  10. FAO-UNESCO: Soil Map of the World.-World Soil Resources, Report 60. Rome 1988.Google Scholar
  11. Field, C.B., Ball, J.T., Berry, J.A.: Photosynthesis: principles and field techniques.-In: Pearcy, R.W., Ehleringer, J., Mooney, H.A., Rundel, P.W. (ed.): Plant Physiological Ecology. Field Methods and Instrumentation. Pp. 209–248. Chapman & Hall, New York 1989.Google Scholar
  12. Gasque, M.: Colonización del esparto (Stipa tenacissima L.) en sectores degradadas del clima semiárido.-PhD Thesis. Politécnica de Valencia University, Escuela Técnica Superior de Ingenieros Agrónomos, Valencia 1999.Google Scholar
  13. Gasque, M., García-Fayos, P.: Seed dormancy and longevity in Stipa tenacissima L. (Poaceae).-Plant Ecol. 168: 279–290, 2003.CrossRefGoogle Scholar
  14. Gauquelin, T., Jalut, G., Iglesias, M., Valle, F., Fromard, F., Dedoubat, J.J.: Phytomass and carbon storage in the Stipa tenacissima steppes of the Baza basin, Andalusia, Spain.-J. Arid Environ. 34: 277–286, 1996.CrossRefGoogle Scholar
  15. Grace, J.: Plant water relations.-In: Crawley, M.J. (ed.): Plant Ecology. 2nd Ed. Pp. 28–50. Blackwell Science, London 1997.Google Scholar
  16. Guijarro, J.A.: Aproximación al clima de Alicante y su comarca.-In: Excmo. Ayuntamiento de Alicante (ed.): El medio físico de la Comarca de Alicante. Pp. 248–277. Ayuntamiento de Alicante, Alicante 1981.Google Scholar
  17. Haase, P., Pugnaire, F.I, Clark, S.C., Incoll, L.D.: Environmental control of canopy dynamics and photosynthetic rate in the evergreen tussock grass Stipa tenacissima.-Plant Ecol. 145: 327–339, 1999.CrossRefGoogle Scholar
  18. Ishida, A., Yazaki, K., Lai Hoe, A.: Ontogenetic transition of leaf physiology and anatomy from seedlings to mature trees of a rain forest pioneer tree, Macaranga gigantea.-Tree Physiol. 25: 513–522, 2005.PubMedGoogle Scholar
  19. James, S.A., Bell, D.T.: Leaf morphological and anatomical characteristics of heteroblastic Eucalyptus globulus ssp. globulus (Myrtaceae).-Aust. J. Bot. 49: 259–269, 2001.CrossRefGoogle Scholar
  20. Jones, H.G.: Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology. 2nd Ed.-Cambridge University Press, Cambridge 1992.Google Scholar
  21. Kalapos, T., Van-Den-Boogaard, R., Lambers, H.: Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species.-Plant Soil 185: 137–149, 1996.CrossRefGoogle Scholar
  22. Le Houérou, H.N.: The desert and arid zones of Northern Africa.-In: Evenary, M., Noy-Meir, I., Goodall, D.W. (ed.): Hot Deserts and Arid Shrublands. Pp. 101–147. Elsevier, Amsterdam 1986.Google Scholar
  23. Maestre, F.T., Cortina, J.: Insight into ecosystem composition and function in a sequence of degraded semiarid steppes.-Restoration Ecol. 12: 494–502, 2004.CrossRefGoogle Scholar
  24. Maestre, F.T., Cortina, J.: Ecosystem structure and soil-surface condition drive the variability in the foliar δ13C and δ15N of Stipa tenacissima in semiarid Mediterranean steppes.-Ecol. Res. 21: 44–53, 2006.CrossRefGoogle Scholar
  25. Maestre, F.T., Ramírez, D.A., Cortina, J.: Ecología del esparto (Stipa tenacissima L.) y los espartales de la Península Ibérica.-Ecosistemas 2007/2, 2007. (URL:
  26. Matzner, S.L., Rice, K.J., Richards, J.H.: Patterns of stomatal conductance among blue oak (Quercus douglasii) size classes and populations: implications for seedling establishment.-Tree Physiol. 23: 777–784, 2003.PubMedGoogle Scholar
  27. Nesterenko, T.V., Tikhomirov, A.A., Shikhov, V.N.: Ontogenetic approach to the assessment of plant resistance to prolonged stress using chlorophyll fluorescence induction method.-Photosynthetica 44: 321–332, 2006.CrossRefGoogle Scholar
  28. Ohsumi, A., Hamasaki, A., Nakagawa, H., Yoshida, H., Shiraiwa, T., Horie, T.: A model explaining genotypic and ontogenetic variation of leaf photosynthesis rate in rice (Oryza sativa) based on leaf nitrogen content and stomatal conductance.-Ann. Bot. 99: 265–273, 2007.PubMedCrossRefGoogle Scholar
  29. Pugnaire, F.I., Haase, P.: Comparative physiology and growth of two perennial tussock grass species in a semi-arid environment.-Ann. Bot. 77: 81–86, 1996.CrossRefGoogle Scholar
  30. Pugnaire, F.I., Haase, P., Incoll, L., Clark, S.C.: Response of tussock grass Stipa tenacissima to watering in a semi-arid environment.-Funct. Ecol. 10: 265–274, 1996.CrossRefGoogle Scholar
  31. Ramírez, D.A.: Estudio de la transpiración del esparto (Stipa tenacissima L.) en una cuenca del semiárido alicantino: un análisis pluriescalar.-Ph.D. Thesis. University of Alicante, Alicante 2006.Google Scholar
  32. Ramírez, D.A., Bellot, J., Domingo, F., Blasco, A.: Can water responses in Stipa tenacissima L. during the summer season be promoted by non-rainfall water gains in soil?-Plant Soil 291: 67–79, 2007a.CrossRefGoogle Scholar
  33. Ramírez, D.A., Bellot, J., Domingo, F., Blasco, A.: Stand transpiration of Stipa tenacissima grassland by sequential scaling and multi-source evapotranspiration modelling.-J. Hydrol. 342: 124–133, 2007b.CrossRefGoogle Scholar
  34. Ramírez, D.A., Valladares, F., Blasco, A., Bellot, J.: Assessing transpiration in the tussock grass Stipa tenacissima L.: the crucial role of the interplay between morphology and physiology.-Acta oecol. 30: 386–398, 2006.CrossRefGoogle Scholar
  35. Ramírez, D.A., Valladares, F., Blasco, A., Bellot, J.: Effects of tussock size and soil water content on whole plant gas exchange in Stipa tenacissima L.: extrapolating from the leaf vs. modelling crown architecture.-Environ. exp. Bot. 62: 376–388, 2008.CrossRefGoogle Scholar
  36. Schmidt, G., Stuntz, S., Zotz, G.: Plant size: an ignored parameter in epiphyte ecophysiology?-Plant Ecol. 153: 65–72, 2001.CrossRefGoogle Scholar
  37. Schulze, E.-D., Hall, A.E.: Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments.-In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (ed.): Physiological Plant Ecology II. Pp. 181–230. Springer, Berlin-Heidelberg-New York 1982.Google Scholar
  38. Servicio del Esparto: El Esparto y su Economía.-Ministerio de Industria y Comercio de Agricultura, Madrid 1950.Google Scholar
  39. Takai, T., Matsuura, S., Nishio, T., Oshumi, A., Shiraiwa, T., Horie, T.: Rice yield potential is closely related to crop growth rate during late reproductive period.-Field Crops Res. 96: 328–335, 2006.CrossRefGoogle Scholar
  40. Toft, N.L, Anderson, J.E., Nowak, R.S.: Water use efficiency and carbon isotope composition of plans in a cold desert environment.-Oecologia 80: 11–18, 1989.CrossRefGoogle Scholar
  41. Valladares, F., Pugnaire, F.I.: Tradeoffs between irradiance capture and avoidance in semi-arid environments assessed with a crown architecture model.-Ann. Bot. 83: 459–469, 1999.CrossRefGoogle Scholar
  42. Valladares, F., Sánchez-Gómez, D.: Ecophysiological traits associated with drought in Mediterranean tree seedlings: individual responses versus interspecific trends in eleven species.-Plant Biol. 8: 688–697, 2006.PubMedCrossRefGoogle Scholar
  43. Vesk, P.A.: Plant size and resprouting ability: trading tolerance and avoidance of damage?-J. Ecol. 94: 1027–1034, 2006.CrossRefGoogle Scholar
  44. White, F.: The Vegetation of Africa.-UNESCO, París 1983.Google Scholar
  45. Zar, J.H.: Biostatistical Analysis. 4th Ed.-Prentice-Hall, New Jersey 1999.Google Scholar
  46. Zhang, H., Oweis, T.Y., Garabet, S., Pala, M.: Water-use efficiency and transpiration efficiency of wheat under rain-fed conditions and supplemental irrigation in a Mediterranean-type environment.-Plant Soil 201: 295–305, 1998.CrossRefGoogle Scholar
  47. Zotz, G.: Photosynthetic capacity increases with plant size.-Bot. Acta 110: 306–308, 1997.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2008

Authors and Affiliations

  • D. A. Ramírez
    • 1
  • F. Valladares
    • 2
    • 3
  • F. Domingo
    • 4
    • 5
  • J. Bellot
    • 6
  1. 1.Departamento de Ciencias AmbientalesUniversidad de Castilla-La ManchaToledoSpain
  2. 2.Instituto de Recursos Naturales. Centro de Ciencias MedioambientalesConsejo Superior de Investigaciones Científicas (CSIC)MadridSpain
  3. 3.Departamento de Biología y Geología. Escuela Superior de Ciencias Experimentales y TecnológicasUniversidad Rey Juan CarlosMóstolesSpain
  4. 4.Estación Experimental de Zonas ÁridasConsejo Superior de Investigaciones Científicas (CSIC)AlmeríaSpain
  5. 5.Departamento de Biología Vegetal y Ecología, Escuela Politécnica SuperiorUniversidad de AlmeríaAlmeríaSpain
  6. 6.Departamento de EcologíaUniversidad de AlicanteAlicanteSpain

Personalised recommendations