Advertisement

Photosynthetica

, Volume 46, Issue 1, pp 115–126 | Cite as

Universal chlorophyll equations for estimating chlorophylls a, b, c, and d and total chlorophylls in natural assemblages of photosynthetic organisms using acetone, methanol, or ethanol solvents

  • R. J. Ritchie
Original Papers

Abstract

A universal set of equations for determining chlorophyll (Chl) a, accessory Chl b, c, and d, and total Chl have been developed for 90 % acetone, 100 % methanol, and ethanol solvents suitable for estimating Chl in extracts from natural assemblages of algae. The presence of phaeophytin (Ph) a not only interferes with estimates of Chl a but also with Chl b and c determinations. The universal algorithms can hence be misleading if used on natural collections containing large amounts of Ph. The methanol algorithms are severely affected by the presence of Ph and so are not recommended. The algorithms were tested on representative mixtures of Chls prepared from extracts of algae with known Chl composition. The limits of detection (and inherent error, ±95 % confidence limit) for all the Chl equations were less than 0.03 g m−3. The algorithms are both accurate and precise for Chl a and d but less accurate for Chl b and c. With caution the algorithms can be used to calculate a Chl profile of natural assemblages of algae. The relative error of measurements of Chls increases hyperbolically in diluted extracts. For safety reasons, efficient extraction of Chls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of Chls in natural assemblages of aquatic plants.

Additional key words

Acaryochloris algorithms error structure Phaeodactylum phaeophytin Rhodomonas spectrophotometric determination Synechococcus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, M., Miyashita, H., Kise, H., Watanabe, T., Miyachi, S., Yobayashi, M.: Detection of chlorophyll d′ and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina.-Anal. Sci. 17: 205–208, 2001.PubMedCrossRefGoogle Scholar
  2. Allen, M.M.: Methods for cyanophyceae.-In: Stein, J.R. (ed.): Handbook of Phycological Methods: Culture Methods and Growth Measurements. Pp. 127–138. Cambridge University Press, Cambridge 1973.Google Scholar
  3. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris.-Plant Physiol. 24: 1–15, 1949.PubMedGoogle Scholar
  4. Atwell, B.J., Kreidermann, P.E., Turnbull, C.G.N.: Plants in Action.-MacMillan Education Australia Publ., South Yarra 1999.Google Scholar
  5. BRENDA: Brenda: the comprehensive enzyme information system.-Retrieved from http://www.brenda.uni-koeln.de/index.php4 on 13 July 2005.
  6. French, C.S.: The chlorophylls in vivo and in vitro.-In: Ruhland, W. (ed.): Encyclopedia of Plant Physiology. Vol. 5/1. Pp. 252–297. Springer-Verlag, Berlin 1960.Google Scholar
  7. Humphrey, G.F., Jeffrey, S.W.: Test of accuracy of spectrophotometric equations for the simultaneous determination of chlorophylls a, b, c 1 and c 2.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 616–621. UNESCO Publ., Paris 1997.Google Scholar
  8. Hynninen, P.H.: Chemistry of chlorophylls: modifications.-In: Scheer, H. (ed.): Chlorophylls. Pp. 145–209. CRC Press, Boca Raton-Ann Arbor-Boston-London 1991.Google Scholar
  9. Jeffrey, S.W.: An improved thin-layer chromatographic technique for marine phytoplankton pigments.-Limnol. Oceanogr. 26: 191–197, 1981.CrossRefGoogle Scholar
  10. Jeffrey, S.W., Humphrey, G.F.: New spectrophotometric equations for determining chlorophyll a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton.-Biochem. Physiol. Pflanz. 167: 191–194, 1975.Google Scholar
  11. Jeffrey, S.W., Mantoura, R.F.C., Bjørnland, T.: Data for the identification of 47 key phytoplankton pigments.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 449–559. UNESCO Publ., Paris 1997.Google Scholar
  12. Jeffrey, S.W., Vesk, M.: Introduction to marine phytoplankton and their pigment signatures.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 37–84. UNESCO Publ., Paris 1997.Google Scholar
  13. Jeffrey, S.W., Welschmeyer, N.A.: Spectrophotometric and fluorometric equations in common use in oceanography.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 597–621. UNESCO Publ., Paris 1997.Google Scholar
  14. Jeffrey, S.W., Wright, S.W.: Qualitative and quantitative HPLC analysis of SCOR reference culture collections.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 343–360. UNESCO Publ., Paris 1997.Google Scholar
  15. Johnson, M.L., Faunt, L.M.: Parameter estimation by least squares methods.-Methods Enzymol. 210: 1–37, 1992.PubMedGoogle Scholar
  16. Kuhl, M., Min Chen, Ralph, P.J., Schreiber, U., Larkum, A.W.D.: A niche for cyanobacteria containing chlorophyll d.-Nature 433: 820, 2005.PubMedCrossRefGoogle Scholar
  17. Larkum, A.W.D., Scaramuzzi, C., Cox, G.C., Hiller, R.G., Turner, A.G.: Light-harvesting chlorophyll c-like pigment in Prochloron.-Proc. nat. Acad. Sci. USA 91: 679–683, 1994.PubMedCrossRefGoogle Scholar
  18. MacLulich, J.H.: Colonization of bare rock surfaces by microflora in a rocky intertidal habitat.-Mar. Ecol. Progr. Ser. 22: 91–96, 1986a.CrossRefGoogle Scholar
  19. MacLulich, J.H.: Experimental evaluation of methods for sampling and assaying intertidal epilithic microalgae.-Mar. Ecol. Progr. Ser. 34: 275–280, 1986b.CrossRefGoogle Scholar
  20. MacLulich, J.H.: Variations in the density and variety of intertidal epilithic microflora.-Mar. Ecol. Progr. Ser. 40: 285–293, 1987.CrossRefGoogle Scholar
  21. Manning, W.M., Strain, H.H.: Chlorophyll d, a green pigment of red algae.-J. biol. Chem. 151: 1–19, 1943.Google Scholar
  22. Mantoura, R.F.C., Jeffrey, S.W., Llewellyn, C.A., Claustre, H., Morales, C.E.: Comparison between spectrophotometric, fluorometric and HPLC methods for chlorophyll analysis.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 361–380. UNESCO Publ., Paris 1997.Google Scholar
  23. Matile, P., Hörtensteiner, S., Thomas, H.: Chlorophyll degradation.-Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 67–95, 1999.PubMedCrossRefGoogle Scholar
  24. MBIC: Marine Biological Institute [http://seasquirt.mbio.co.jp] accessed 21 June 2006.
  25. McLachlan, J.: Growth media-marine.-In: Stein, J.R. (ed.): Handbook of Phycological Methods: Culture Methods and Growth Measurements. Pp. 25–51. Cambridge University Press, Cambridge 1973.Google Scholar
  26. Miller, S.R., Augustine, S., Olson, T.L., Blankenship, R.E., Selker, J., Wood, A.M.: Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene.-Proc. nat. Acad. Sci. USA 102: 850–855, 2005.PubMedCrossRefGoogle Scholar
  27. Miyashita, H., Adachi, K., Kurano, N., Ikemoto, H., Chihara, M., Miyachi, S.: Pigment composition of a novel oxygenic photosynthetic prokaryote containing chlorophyll d as the major chlorophyll.-Plant Cell Physiol. 38: 274–281, 1997.Google Scholar
  28. Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chihara, M., Miyachi, S.: Chlorophyll d as a major pigment.-Nature 383: 402, 1996.CrossRefGoogle Scholar
  29. Miyashita, H., Ikemoto, H., Kurano, N., Miyachi, S., Chihara, M.: Acaryochloris marina gen. et sp. nov. (Cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment.-J. Phycol. 39: 1247–1253, 2003.CrossRefGoogle Scholar
  30. Murakami, A., Miyashita, H., Iseki, M., Adachi, K., Mimuro, M.: Chlorophyll d in an epiphytic cyanobacterium of red algae.-Science 303: 1633, 2004.PubMedCrossRefGoogle Scholar
  31. Murphy, R.J., Underwood, A.J., Pinkerton, M.H., Range, P.: Field spectrometry: New methods to investigate epilithic micro-algae on rocky shores.-J. exp. mar. Biol. Ecol. 325: 111–124, 2005.CrossRefGoogle Scholar
  32. Porra, R.J.: A simple method for extracting chlorophylls from recalcitrant alga, Nannochloris atomus, without formation of spectroscopically-different magnesium-rhodochlorin derivatives.-Biochim. biophys. Acta 1019: 137–141, 1990.CrossRefGoogle Scholar
  33. Porra, R.J.: Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic and marine organisms, including recalcitrant algae.-In: Scheer, H. (ed.): Chlorophylls. Pp. 31–57. CRC Press, Boca Raton-Ann Arbor-Boston-London 1991.Google Scholar
  34. Porra, R.J.: The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b.-Photosynth. Res. 73: 149–156, 2002.PubMedCrossRefGoogle Scholar
  35. Porra, R.J., Thompson, W.A., Kriedemann, P.E.: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry.-Biochim. biophys. Acta 975: 384–394, 1989.CrossRefGoogle Scholar
  36. Ritchie, R.J.: Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents.-Photosynth. Res. 89: 27–41, 2006.PubMedCrossRefGoogle Scholar
  37. Scheer, H. (ed.): Chlorophylls.-CRC Press, Boca Raton-Ann Arbor-Boston-London 1991.Google Scholar
  38. Šesták, Z.: Determinations of chlorophylls a and b.-In: Šesták, Z., Čatský, J., Jarvis, P.G. (ed.): Plant Photosynthetic Production: Manual of Methods. Pp. 672–701. Dr W. Junk N.V. Publ., The Hague 1971.Google Scholar
  39. Straume, H., Johnson, M.L.: Analysis of residuals: criteria for determining goodness-of-fit.-Methods Enzymol. 210: 87–105, 1992.PubMedCrossRefGoogle Scholar
  40. Svec, W.A.: The distribution and extraction of the chlorophylls.-In: Scheer, H. (ed): Chlorophylls. Pp. 89–102. CRC Press, Boca Raton-Ann Arbor-Boston-London 1991.Google Scholar
  41. Tandeau de Marsac, N., Houmand, J.: Complementary chromatic adaptation: physiological conditions and action spectra.-In: Abelson, J.N., Simon, M.I. (ed.): Methods in Enzymology. Vol. 167. Pp. 318–328. Academic Press, San Diego-New York-Berkeley-Boston-London-Sydney-Tokyo-Toronto 1988.Google Scholar
  42. Thompson, R.C., Tobin, M.L., Hawkins, S.J., Norton, T.A.: Problems in extraction and spectrophotometric determinations of chlorophyll from epilithic microbial biofilms: towards a standard method.-J. mar. biol. Assoc. UK 79: 551–558, 1999.CrossRefGoogle Scholar
  43. Wright, S.W., Jeffrey, S.W.: High resolution HPLC system for chlorophylls and carotenoids of marine plankton.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 327–341. UNESCO Publ., Paris 1997.Google Scholar
  44. Wright, S.W., Jeffrey, S.W., Mantoura, F.R.C.: Evaluation of methods and solvents for pigment extraction.-In: Jeffrey, S.W., Mantoura, R.F.C., Wright, S.W. (ed.): Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Pp. 261–282. UNESCO Publ., Paris 1997.Google Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2008

Authors and Affiliations

  1. 1.School of Biological SciencesThe University of SydneyAustralia

Personalised recommendations