, Volume 45, Issue 3, pp 363–369 | Cite as

Selective effects of H2O2 on cyanobacterial photosynthesis

  • M. Drábková
  • H. C. P. Matthijs
  • W. Admiraal
  • B. Maršálek
Original Papers


The sensitivity of phytoplankton species for hydrogen peroxide (H2O2) was analyzed by pulse amplitude modulated (PAM) fluorometry. The inhibition of photosynthesis was more severe in five tested cyanobacterial species than in three green algal species and one diatom species. Hence the inhibitory effect of H2O2 is especially pronounced for cyanobacteria. A specific damage of the photosynthetic apparatus was demonstrated by changes in 77 K fluorescence emission spectra. Different handling of oxidative stress and different cell structure are responsible for the different susceptibility to H2O2 between cyanobacteria and other phytoplankton species. This principle may be potentially employed in the development of new agents to combat cyanobacterial bloom formation in water reservoirs.

Additional key words

chlorophyll fluorescence induction diatoms fluorescence emission spectra green algae species differences 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asada, K.:. Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants.-Physiol. Plant. 85: 235–241, 1992.CrossRefGoogle Scholar
  2. Bald, D., Kruip, J., Rögner, M.: Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems?-Photosynth. Res. 49: 103–118, 1996.CrossRefGoogle Scholar
  3. Barroin, G., Feuillade, M.: Hydrogen peroxide as a potential algicide for Oscillatoria rubescens D.C.-Water Res. 20: 619–623, 1986.CrossRefGoogle Scholar
  4. Bold, H.C.: The morphology of Chlamydomonas chlamydogama, sp. nov.-Bull. Torrey bot. Club 76: 101–108, 1949.CrossRefGoogle Scholar
  5. Campbell, D., Hurry, V., Clarke, A.K., Gustafsson, P., Öquist, G.: Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation.-Microbiol. mol. Biol. Rev. 62: 667–683, 1988.Google Scholar
  6. Cooper, W.J., Zika, R.G., Petasne, R.G., Plane, J.M.C.: Photochemical formation of H2O2 in natural waters exposed to sunlight.-Environ. Sci. Technol. 22: 1156–1160, 1988.CrossRefGoogle Scholar
  7. Drábková, M., Admiraal, W., Maršálek, B.: Combined exposure to hydrogen peroxide and light-selective effects on cyanobacteria, green algae and diatoms.-Environ. Sci. Technol. 41: 309–314, 2007.PubMedCrossRefGoogle Scholar
  8. Gonzáles-Moreno, S., Barrera-Gómez, J., Perales, H., Moreno-Sánchez, R.: Multiple effects of salinity on photosynthesis of the protist Euglena gracilis.-Physiol. Plant. 101: 777–786, 1997.CrossRefGoogle Scholar
  9. Grossman, A.R., Bhaya, D., Apt, K.E., Kehoe, D.M.: Light-harvesting complexes in oxygenic photosynthesis: Diversity, control, and evolution.-Annu. Rev. Genet. 29: 231–288, 1995.PubMedCrossRefGoogle Scholar
  10. Häkkinen, P.J., Anesio, A.M., Graneli, W.: Hydrogen peroxide distribution, production and decay in boreal lakes.-Can. J. Fish. aquat. Sci. 61: 1520–1527, 2004.CrossRefGoogle Scholar
  11. Haldimann, P., Feller, U.: Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves.-Plant Cell Environ. 28: 302–317, 2005.CrossRefGoogle Scholar
  12. Kay, S.H., Quimby, P.C., Ouzts, J.D.: Photo-enhancement of hydrogen peroxide toxicity to submersed vascular plants and algae.-J. aquat. Plant Manage. 22: 25–34, 1984.Google Scholar
  13. Lupínková, L., Komenda, J.: Oxidative modifications of the photosystem II D1 protein by reactive oxygen species: From isolated protein to cyanobacterial cells.-Photochem. Photobiol. 79: 152–162, 2004.PubMedCrossRefGoogle Scholar
  14. Miller, A.G., Hunter, K.J., O’Leary, S.J.B., Hart, L.J.: The photoreduction of H2O2 by Synechococcus sp. PCC 7942 and UTEX 625.-Plant Physiol. 123: 625–635, 2000.PubMedCrossRefGoogle Scholar
  15. Miyake, C., Michihata, F., Asada, K.: Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae-acquisition of ascorbate peroxidase during evolution of cyanobacteria.-Plant Cell Physiol. 32: 33–43, 1991.Google Scholar
  16. Perelman, A., Uzan, A., Hacohen, D., Schwarz, R.: Oxidative stress in Synechococcus sp. strain PCC 7942: Various mechanisms for H2O2 detoxification with different physiological roles.-J. Bacteriol. 185: 3654–3660, 2003.PubMedCrossRefGoogle Scholar
  17. Quimby, P.C., Kay, S.H., Ouzts, J.D.: Sodium carbonate peroxyhydrate as a potential algicide.-J. aquat. Plant Manage. 26: 67–68, 1988.Google Scholar
  18. Samuilov, V.D., Bezryadnov, D.B., Gusev, M.V., Kitashov, A.V., Fedorenko, T.A.: Hydrogen peroxide inhibits photosynthetic electron transport in cells on cyanobacteria.-Biochemistry (Moscow) 66: 640–645, 2001.CrossRefGoogle Scholar
  19. Schrader, K.K., de Regt, M.Q., Tidwell, P.D., Tucker, C.S., Duke S.O.: Compounds with selective toxicity towards the off-flavor metabolite-producing cyanobacterium Oscillatoria cf. chalybea.-Aquaculture 163: 85–89, 1998.CrossRefGoogle Scholar
  20. Shigeoka, S., Ishikawa, T., Tamoi, M., Miyagawa, Y., Takeda, T., Yabuta, Y., Yoshimura, K.: Regulation and function of ascorbate peroxidase isoenzymes.-J. exp. Bot. 372: 1305–1319, 2002.CrossRefGoogle Scholar
  21. Staub, R.: [Research on physiology of nutrients of the planktonic cyanobacterium Oscillatoria rubescens DC.]-Schweiz. Z. Hydrol. 23: 82–198, 1961. [In Germ.]CrossRefGoogle Scholar
  22. Tel-Or, E., Huflejt, M.E., Packer, L.: Hydroperoxide metabolism in cyanobacteria.-Arch. Biochem. Biophys. 246: 396–402, 1986.PubMedCrossRefGoogle Scholar
  23. Tytler, E.G., Wong, T., Codd, G.A.: Photoinactivation in vivo of superoxide dismutase and catalase in the cyanobacterium Microcystis aeruginosa.-FEMS Microbiol. Lett. 23: 239–242, 1984.CrossRefGoogle Scholar
  24. Van Kooten, O., Snel, J.F.H.: The use of chlorophyll fluorescence nomenclature in plant stress physiology.-Photosynth. Res. 25: 147–150, 1990.CrossRefGoogle Scholar
  25. Wen, X., Gong, H., Lu, C.: Heat stress induces an inhibition of excitation energy transfer from phycobilisomes to photosystem II but not to photosystem I in a cyanobacterium Spirulina platensis.-Plant Physiol. Biochem. 43: 389–395, 2005.PubMedGoogle Scholar
  26. Yamamoto, H., Miyake, C., Dietz, K.J., Tomizawa, K., Murata, T., Yokota, A.: Thioredoxin peroxidase in the cyanobacterium Synechocystis sp. PCC 6803.-FEBS Lett. 447: 269–273, 1999.PubMedCrossRefGoogle Scholar
  27. Yousef, N., Pistorius, E.K., Michel, K.P.: Comparative analysis of idiA and isiA transcription under iron starvation and oxidative stress in Synechococcus elongatus PCC 7942 wild-type and selected mutants.-Arch. Microbiol. 180: 471–483, 2003.PubMedCrossRefGoogle Scholar

Copyright information

© Institute of Experimental Botany, ASCR 2007

Authors and Affiliations

  • M. Drábková
    • 1
    • 3
    • 4
  • H. C. P. Matthijs
    • 2
  • W. Admiraal
    • 1
  • B. Maršálek
    • 3
    • 4
  1. 1.Department of Aquatic Ecology and EcotoxicologyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Aquatic MicrobiologyUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.RECETOX-Research Centre for Environmental Chemistry and EcotoxicologyMasaryk UniversityBrnoCzech Republic
  4. 4.Institute of Botany, Department of Experimental Phycology and EcotoxicologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic

Personalised recommendations