Advertisement

Variations on intra-theoretical logical pluralism: internal versus external consequence

  • Bogdan Dicher
Article
  • 18 Downloads

Abstract

Intra-theoretical logical pluralism is a form of meaning-invariant pluralism about logic, articulated recently by Hjortland (Australas J Philos 91(2):355–373, 2013). This version of pluralism relies on it being possible to define several distinct notions of provability relative to the same logical calculus. The present paper picks up and explores this theme: How can a single logical calculus express several different consequence relations? The main hypothesis articulated here is that the divide between the internal and external consequence relations in Gentzen systems generates a form of intra-theoretical logical pluralism.

Keywords

Logical pluralism Intra-theoretical pluralism Logical consequence Internal consequence External consequence 

Notes

Acknowledgements

I am grateful to the audiences at the ALOPHIS Research Seminar (University of Cagliari), The Institute for Research in the Humanities (University of Bucharest), Triennial Conference of the Italian Society for Logic and Philosophy of Science (University of Bologna), ENFA 7: Encontro Nacional de Filosofia Analitica, 7th edition (University of Lisbon) where I have presented previous versions of this paper. I owe special thanks to Francesco Paoli for many helpful discussions on the issues broached here as well as for encouraging me to actually write this paper. At different stages, this work was supported by Regione Autonoma Sardegna within the Project CRP-78705 (L.R. 7/2007) “Metaphor and argumentation” and by the FCT – Fundação para a Ciência e a Tecnologia, Portugal, through the grant SFRH/BPD/116125/2016.

References

  1. Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity (Vol. 1). Princeton: Princeton University Press.Google Scholar
  2. Asmus, C., & Restall, G. (2012). A history of consequence relations. In D. M. Gabbay, F. J. Pelletier, & J. Woods (Eds.), Handbook of the history of logic (Vol. 11, pp. 11–61). New York: Elsevier.Google Scholar
  3. Avron, A. (1988). The semantics and proof theory of linear logic. Theoretical Computer Science, 57, 161–184.CrossRefGoogle Scholar
  4. Avron, A. (1991). Simple consequence relations. Information and Computation, 92, 105–139.CrossRefGoogle Scholar
  5. Barrio, E. A., Rosenblatt, L., & Tajer, D. (2015). The logics of strict-tolerant logic. Journal of Philosophical Logic, 44, 551–571.CrossRefGoogle Scholar
  6. Barrio, E. A., Pailos, F., & Szmuc, D. (2018). Hierarchies of classical and paraconsistent logics (unpublished manuscript).Google Scholar
  7. Beall, J. C., & Restall, G. (2000). Logical pluralism. Australasian Journal of Philosophy, 78, 475–493.CrossRefGoogle Scholar
  8. Beall, J. C., & Restall, G. (2006). Logical pluralism. Oxford: Oxford University Press.Google Scholar
  9. Blok, W. J., & Jónsson, B. (2006). Equivalence of consequence operations. Studia Logica, 83, 91–110.CrossRefGoogle Scholar
  10. Carnap, R. (1959). The logical syntax of language. Littlefield: Adams and Co.Google Scholar
  11. Cobreros, P., Egré, P., Ripley, D., & van Rooij, R. (2013). Reaching transparent truth. Mind, 122, 841–866.CrossRefGoogle Scholar
  12. Cook, R. T. (2010). Let a thousand flowers bloom: A tour of logical pluralism. Philosophy Compass, 5, 492–504.CrossRefGoogle Scholar
  13. Dicher, B. (2016). A proof-theoretic defence of meaning-invariant logical pluralism. Mind, 125, 727–757.CrossRefGoogle Scholar
  14. Dicher, B., & Paoli, F. (forthcoming a). The original sin of proof-theoretic semantics. Synthese.Google Scholar
  15. Dicher, B., & Paoli, F. (forthcoming b). ST, LP and tolerant metainferences. In: Başkent, C., & Ferguson, T. (eds.). Graham Priest on Dialetheism and Paraconsistency, Outstanding Contributions to Logic Series, Springer.Google Scholar
  16. Dummett, M. (1991). The logical basis of metaphysics. London: Duckworth.Google Scholar
  17. French, R. (2016). Structural reflexivity and the paradoxes of self-reference. Ergo An Open Access Journal of Philosophy 3.Google Scholar
  18. Haack, S. (1996). Deviant logic, fuzzy logic: Beyond the formalism. Cambridge: Cambridge University Press.Google Scholar
  19. Hacking, I. (1979). What is logic? The Journal of Philosophy, 76, 285–319.CrossRefGoogle Scholar
  20. Hjortland, O. (2014). Verbal disputes in logic: Against minimalism for logical connectives. Logique et Analyse, 57, 463–486.Google Scholar
  21. Hjortland, O. T. (2013). Logical pluralism, meaning-variance, and verbal disputes. Australasian Journal of Philosophy, 91, 355–373.CrossRefGoogle Scholar
  22. Kleene, S. C. (1952). Introduction to metamathematics. Amsterdam: North-Holland.Google Scholar
  23. Mares, E., & Paoli, F. (2014). Logical consequence and the paradoxes. Journal of Philosophical Logic, 43, 439–469.CrossRefGoogle Scholar
  24. Negri, S., & von Plato, J. (2001). Structural proof theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  25. Paoli, F. (2002). Substructural logics: A primer. Berlin: Springer.CrossRefGoogle Scholar
  26. Paoli, F. (2014). Semantic minimalism for the logical constants. Logique et analyse, 57, 439–461.Google Scholar
  27. Prawitz, D. (1965). Natural deduction: A proof theoretical study. Stockholm: Almqvist and Wiksell.Google Scholar
  28. Priest, G. (1979). The logic of paradox. Journal of Philosophical Logic, 8, 219–241.CrossRefGoogle Scholar
  29. Pynko, A. P. (1995). On Priest’s logic of paradox. Journal of Applied Non-Classical Logics, 5, 219–225.CrossRefGoogle Scholar
  30. Quine, Wv. (1970). Philosophy of logic. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  31. Restall, G. (2000). An introduction to substructural logics. London: Routledge.CrossRefGoogle Scholar
  32. Restall, G. (2002). Carnap’s tolerance, meaning and logical pluralism. The Journal of Philosophy, 99, 426–443.CrossRefGoogle Scholar
  33. Restall, G. (2005). Multiple conclusions. In Hájek, P., Valdés-Villanueva, L., & Westerståhl, D. (eds.). Logic, methodology and philosophy of science: Proceedings of the twelfth international congress (pp. 189–205). KCL Publications.Google Scholar
  34. Restall, G. (2014). Pluralism and proofs. Erkenntnis, 79, 279–291.CrossRefGoogle Scholar
  35. Ripley, D. (2012). Conservatively extending classical logic with transparent truth. The Review of Symbolic Logic, 5, 354–378.CrossRefGoogle Scholar
  36. Ripley, D. (2013). Paradoxes and failures of cut. Australasian Journal of Philosophy, 91, 139–164.CrossRefGoogle Scholar
  37. Russell, G. (2014). Logical pluralism. In: Zalta, E (ed), Stanford: Stanford Encyclopedia of Philosophy, Stanford.Google Scholar
  38. Tarski, A. (1956). Logic, Semantics, metamathematics: Papers from 1923 to 1938. Oxford: Clarendon Press.Google Scholar
  39. Tarski, A. (2002). On the concept of following logically. History and Philosophy of Logic, 23(3), 155–196. Originally published in 1936.CrossRefGoogle Scholar
  40. Urbas, I. (1996). Dual-intuitionistic logic. Notre Dame Journal of Formal Logic, 37, 440–451.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centre for PhilosophyUniversity of LisbonLisbonPortugal

Personalised recommendations