Advertisement

Philosophical Studies

, Volume 176, Issue 10, pp 2681–2703 | Cite as

Against the iterative conception of set

  • Edward FerrierEmail author
Article
  • 216 Downloads

Abstract

According to the iterative conception, each set is formed out of sets that are, in some sense, prior to it. Because priority plays an essential role in explanations of why contradiction-inducing sets, such as the universal set, do not exist, the success of these explanations depends on our ability to make sense of the relevant priority relation. I argue that attempts to do this have fallen short: understanding priority in a straightforwardly constructivist sense threatens the coherence of the empty set and raises serious epistemological concerns; but the leading realist interpretations–ontological and modal interpretations of priority—are deeply problematic as well. I conclude that the purported explanatory virtues of the iterative conception are, at present, unfounded.

Keywords

Iterative conception of set Russell’s paradox Cantor’s paradox Burali-Forti’s paradox Priority Dependence Unrestricted quantification Modal set theory Mathematical modality 

References

  1. Black, M. (1971). The elusiveness of sets. Review of Metaphysics, 24, 614–636.Google Scholar
  2. Boolos, G. (1998). Logic, logic, and logic. Harvard: Harvard University Press.Google Scholar
  3. Burgess, J. (2008). Mathematics, models, and modality: Selected philosophical essays. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Cantor, G. (1895). Beiträge zur begründung der transfiniten mengenlehre i. Mathematische Annalen, 46, 481–512.CrossRefGoogle Scholar
  5. Cantor, G. (1899). Letter to dedekind. In J. van Heijenoort (Ed.), From Frege to Gödel (1967) (pp. 113–117). Harvard: Harvard University Press.Google Scholar
  6. Correia, F. (2008). Ontological dependence. Philosophy Compass, 3(5), 1013–1032.CrossRefGoogle Scholar
  7. Dummett, M. (1963). The philosophical significance of Gödel’s theorem. In M. Dummett (Ed.), Truth and other enigmas (1978) (pp. 186–214). London: Duckworth.Google Scholar
  8. Dummett, M. (1981). Frege: Philosophy of language (2nd ed.). London: Duckworth.Google Scholar
  9. Dummett, M. (1991). Frege: Philosophy of mathematics. Harvard: Harvard University Press.Google Scholar
  10. Fine, K. (1994). Essence and modality. Philosophical Perspectives, 8, 1–16.CrossRefGoogle Scholar
  11. Fine, K. (1995a). The logic of essence. Journal of Philosophical Logic, 24(3), 241–273.CrossRefGoogle Scholar
  12. Fine, K. (1995b). Ontological dependence. Proceedings of the Aristotelian Society, 95, 269–290.CrossRefGoogle Scholar
  13. Fine, K. (2006a). Our knowledge of mathematical objects. In T. Z. Gendler & J. Hawthorne (Eds.), Oxford studies in epistemology (Vol. 1, pp. 89–109). Wotton-under-Edge: Clarendon Press.Google Scholar
  14. Fine, K. (2006b). Relatively unrestricted quantification. In A. Rayo & G. Uzquiano (Eds.), Absolute generality (pp. 20–44). Oxford: Oxford University Press.Google Scholar
  15. Fraenkel, A. (1922). Zu den grundlagen der cantor-zermeloschen mengenlehre. Mathematische Annalen, 86, 230–237.CrossRefGoogle Scholar
  16. Frege, G. (1895). A critical elucidation of some points in E. Schröder’s, Lectures on the algebra of logic. In B. McGuinness (Ed.), Collected papers on mathematics, logic and philosophy (1984) (pp. 210–228). Oxford: Blackwell.Google Scholar
  17. Gillies, D. (2011). Frege, Dedekind, and Peano on the foundations of arithmetic. Abingdon: Routledge.Google Scholar
  18. Glanzberg, M. (2006). Context and unrestricted quantification. In A. Rayo & G. Uzquiano (Eds.), Absolute generality (pp. 45–74). Oxford: Oxford University Press.Google Scholar
  19. Gödel, K. (1939). Consistency proof for the generalized continuum hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 25, 220–224.CrossRefGoogle Scholar
  20. Gödel, K. (1940). The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory. Princeton: Princeton University Press.Google Scholar
  21. Gödel, K. (1947). What is cantor’s continuum problem? American Mathematical Monthly, 54(9), 515–525.CrossRefGoogle Scholar
  22. Hellman, G. (1989). Mathematics without numbers: Towards a modal-structural interpretation. Oxford: Oxford University Press.Google Scholar
  23. Hewitt, S. (2015). When do some things form a set? Philosophia Mathematica, 23(3), 311–337.CrossRefGoogle Scholar
  24. Koss, M. R. (2013). Semantic and mathematical foundations for intuitionism. Ph.D. thesis, Indiana University.Google Scholar
  25. Lewis, D. (1991). Parts of classes. London: Blackwell.Google Scholar
  26. Linnebo, O. (2010). Pluralities and sets. Journal of Philosophy, 107(3), 144–164.CrossRefGoogle Scholar
  27. Linnebo, O. (2013). The potential hierarchy of sets. Review of Symbolic Logic, 6(2), 205–228.CrossRefGoogle Scholar
  28. Lowe, E. J. (1998). The possibility of metaphysics: Substance, identity, and time. Wotton-under-Edge: Clarendon Press.Google Scholar
  29. McCarty, D. C. (2005). Intuitionism in mathematics. In S. Shapiro (Ed.), The Oxford handbook of philosophy of mathematics and logic (pp. 356–386). Oxford: Oxford University Press.CrossRefGoogle Scholar
  30. Oliver, A., & Smiley, T. (2013). Plural logic. Oxford: Oxford University Press.CrossRefGoogle Scholar
  31. Parsons, C. (1983). Mathematics in philosophy: Selected essays. Ithaca: Cornell University Press.Google Scholar
  32. Potter, M. (1993). Iterative set theory. Philosophical Quarterly, 44(171), 178–193.CrossRefGoogle Scholar
  33. Potter, M. (2004). Set theory and its philosophy: A critical introduction. Oxford: Oxford University Press.CrossRefGoogle Scholar
  34. Priest, G. (2002). Beyond the limits of thought. Oxford: Oxford University Press.CrossRefGoogle Scholar
  35. Putnam, H. (1979). Mathematics, matter and method (2nd ed.). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  36. Rosen, G. (2010). Metaphysical dependence: Grounding and reduction. In B. Hale & A. Hoffmann (Eds.), Modality: Metaphysics, logic, and epistemology (pp. 109–36). Oxford: Oxford University Press.CrossRefGoogle Scholar
  37. Russell, B. (1903). The principles of mathematics. Cambridge: Cambridge University Press.Google Scholar
  38. Russell, B. (1906). On some difficulties in the theory of transfinite numbers and order types. In D. Lackey (Ed.), Essays in analysis (1973) (pp. 135–164). Borough: George Braziller.Google Scholar
  39. Russell, B. (1959). My philosophical development. Crows Nest: George Allen and Unwin.Google Scholar
  40. Schaffer, J. (2009). On what grounds what. In D. Manley, D. J. Chalmers, & R. Wasserman (Eds.), Metametaphysics: New essays on the foundations of ontology (pp. 347–383). Oxford: Oxford University Press.Google Scholar
  41. Scott, D. (1974). Axiomatizing set theory. In T. Jech (Ed.), Proceedings of symposia in pure mathematics (Vol. 13, part 2, pp. 207–214). American Mathematical Society.Google Scholar
  42. Shoenfield, J. (1967). Mathematical logic. Boston: Addison-Wesley Pub. Co.Google Scholar
  43. Skolem, T. (1922). Some remarks on axiomatized set theory. In J. van Heijenoort (Ed.), From Frege to Gödel (1967) (pp. 290–301). Cambridge: Harvard University Press.Google Scholar
  44. Studd, J. P. (2013). The iterative conception of set: A (bi-)modal axiomatisation. Journal of Philosophical Logic, 42(5), 697–725.CrossRefGoogle Scholar
  45. Tahko, T., Lowe, J. (2015). Ontological dependence. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Spring 2015 ed.).Google Scholar
  46. Uzquiano, G. (2003). Plural quantification and classes. Philosophia Mathematica, 11(1), 67–81.CrossRefGoogle Scholar
  47. Uzquiano, G. (2015). Varieties of indefinite extensibility. Notre Dame Journal of Formal Logic, 56(1), 147–166.CrossRefGoogle Scholar
  48. Verdee, P. (2013). Strong, universal and provably non-trivial set theory by means of adaptive logic. Logic Journal of the IGPL, 21(1), 108–125.CrossRefGoogle Scholar
  49. von Neumann, J. (1925). An axiomatization of set theory. In J. van Heijenoort (Ed.), From Frege to Gödel (1967) (pp. 393–413). Cambridge: Harvard University Press.Google Scholar
  50. Wang, H. (1974). The concept of set. In P. Benacerraf & H. Putnam (Eds.), Philosophy of mathematics: Selected readings (1983) (2nd ed., pp. 530–570). Cambridge: Cambridge University Press.Google Scholar
  51. Weber, Z. (2010). Transfinite numbers in paraconsistent set theory. Review of Symbolic Logic, 3(1), 71–92.CrossRefGoogle Scholar
  52. Weber, Z. (2012). Transfinite cardinals in paraconsistent set theory. Review of Symbolic Logic, 5(2), 269–293.CrossRefGoogle Scholar
  53. Williamson, T. (1998). Indefinite extensibility. Grazer Philosophische Studien, 55, 1–24.CrossRefGoogle Scholar
  54. Zermelo, E. (1908). Investigations in the foundations of set theory I. In J. van Heijenoort (Ed.), From Frege to Gödel (1967) (pp. 199–215). Cambridge: Harvard University.Google Scholar
  55. Zermelo, E. (1930). Über grenzzahlen und mengenbereiche: Neue untersuchungen über die grundlagen der mengenlehre. Fundamenta Mathematicae, 16, 29–47.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhilosophyTufts UniversityMedfordUSA

Personalised recommendations