Advertisement

Quantum metaphysical indeterminacy

  • Claudio Calosi
  • Jessica Wilson
Article
  • 75 Downloads

Abstract

On a wide variety of presently live interpretations, quantum mechanics violates the classical supposition of ‘value definiteness’, according to which the properties (‘observables’) of a given particle or system have precise values at all times. Here we consider whether two recent approaches to metaphysical indeterminacy—a metaphysical supervaluationist account, on the one hand, and a determinable-based account, on the other—can provide an intelligible basis for quantum metaphysical indeterminacy (QMI), understood as involving quantum value indefiniteness. After identifying three sources of such QMI, we show that previous arguments (Darby in Australas J Philos 88:227–245, 2010; Skow in Philos Q 60:851–858, 2010) according to which supervaluationism cannot accommodate QMI are unsuccessful; we then provide more comprehensive arguments for this conclusion, which moreover establish that the problems for supervaluationism extend far beyond the orthodox interpretation. We go on to argue that a determinable-based approach can accommodate the full range of sources of QMI.

Keywords

Quantum mechanics Metaphysical indeterminacy Quantum indeterminacy Metaphysical supervaluationism Determinable-based metaphysical indeterminacy 

Notes

Acknowledgements

Thanks to audience members at talks on this topic given at the ‘Metaphysics of Quantity’ conference (NYU, 2015), the Arizona Ontology Conference (2016), the Jowett Society (Oxford, 2016), an eidos seminar in Metaphysics (University of Geneva, 2016), the ‘Kinds of Indeterminacy’ workshop (University of Geneva, 2016), and the Philosophy of Physics seminar at the Instituto de Investigaciones Filosóficos (UNAM, 2018). Thanks also to Nina Emery for her excellent AOC comments, and to Alisa Bokulich, Eddy Chen, Heather Demarest, Catharine Diehl, Benj Hellie, Michael Miller, Alyssa Ney, Elias Okon, Alessandro Torza, Johanna Wolff, and students in Wilson’s ‘Varieties of Indeterminacy’ seminar (2018) for helpful discussion. Finally, thanks to the Swiss National Science Foundation (Project Numbers BSCGIo_157792 and 100012_165738) and the Social Sciences and Humanities Research Council for funding support.

References

  1. Akiba, K. (2004). Vagueness in the world. Noûs, 38, 407–429.CrossRefGoogle Scholar
  2. Albert, D. Z. (1992). Quantum mechanics and experience. Cambridge: Harvard UP.Google Scholar
  3. Albert, D., & Loewer, B. (1992). Tails of Schrödinger’s cat. In R. Clifton (Ed.), Perspectives on quantum reality (pp. 81–92). Dordrecht: Springer.Google Scholar
  4. Arndt, M., Nairz, O., Vos-Andreae, J., Keller, C., van der Zouw, G., & Zeilinger, A. (1999). Waveparticle duality of C60 molecules. Nature, 401, 680–682.CrossRefGoogle Scholar
  5. Barnes, E. (2006). Conceptual room for ontic vagueness. Ph.D. thesis, University of St. Andrews.Google Scholar
  6. Barnes, E. (2010). Ontic vagueness: A guide for the perplexed. Noûs, 44, 601–627.CrossRefGoogle Scholar
  7. Barnes, E., & Cameron, R. (2016). Are there indeterminate states of affairs? No. In E. Barnes (Ed.), Current controversies in metaphysics (pp. 120–132). Abingdon: Routledge.Google Scholar
  8. Barnes, E., & Williams, J. R. G. (2011). A theory of metaphysical indeterminacy. In K. Bennett & D. W. Zimmerman (Eds.), Oxford studies in metaphysics volume 6 (pp. 103–148). Oxford: Oxford University Press.CrossRefGoogle Scholar
  9. Barrett, J. (2010). A structural interpretation of pure wave mechanics. Humana Mente, 13, 225–235.Google Scholar
  10. Bell, J. S. (1987). Are there quantum jumps? In C. W. Kilometer (Ed.), Schrodinger: Centenary celebration of a polymath. Cambridge: Cambridge University Press.Google Scholar
  11. Bokulich, A. (2014). Metaphysical indeterminacy, properties, and quantum theory. Res Philosophica, 91, 449–475.CrossRefGoogle Scholar
  12. Conroy, C. (2012). The relative facts interpretation and Everett’s note added in proof. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 43, 112–120.CrossRefGoogle Scholar
  13. Darby, G. (2010). Quantum mechanics and metaphysical indeterminacy. Australasian Journal of Philosophy, 88, 227–245.CrossRefGoogle Scholar
  14. Dirac, P. A. M. (1930). The principles of quantum mechanics. Wotton-under-Edge: Clarendon Press.Google Scholar
  15. Domenech, G., Freytes, H., & Ronde, C. (1981). Scopes and limits of modality in quantum mechanics. Annalen der Physic, 15, 853–860.CrossRefGoogle Scholar
  16. Egg, M., & Esfeld, M. (2015). Primitive ontology and quantum state in the GRW matter density theory. Synthese, 192, 3229–3245.CrossRefGoogle Scholar
  17. Einstein, A. (1939). Letter to Schrödinger. Letters on wave mechanics: Correspondence with H. A. Lorentz, Max Planck, and Erwin Schrödinger. Vienna: Springer.Google Scholar
  18. Esfeld, M. (2014). The primitive ontology of quantum physics: Guidelines for an assessment of the proposals. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 47, 99–106.CrossRefGoogle Scholar
  19. Esfeld, M., & Gisin, N. (2014). The GRW flash theory: A relativistic quantum ontology of matter in space-time? Philosophy of Science, 81, 248–264.CrossRefGoogle Scholar
  20. Feynman, R. (1982). Simulating physics with computers. International Journal of Theoretical Physics, 21, 467–88.CrossRefGoogle Scholar
  21. French, S., & Krause, D. (2003). Quantum vagueness. Erkenntnis, 59, 97–124.CrossRefGoogle Scholar
  22. Frigg, R. (2009). GRW theory: Ghirardi, Rimini, Weber model of quantum mechanics. In K. Hentschel, D. Greenberger, B. Falkenburg, & F. Weinert (Eds.), Compendium of quantum physics: Concepts, experiments, history and philosophy. Berlin: Springer.Google Scholar
  23. Ghirardi, G. C., Grassi, R., & Benatti, F. (1995). Describing the macroscopic world: Closing the circle within the dynamical reduction program. Foundations of Physics, 25, 5–38.CrossRefGoogle Scholar
  24. Goldstein, S. (1996). Bohmian mechanics and the quantum revolution. Synthese, 107, 145–165.CrossRefGoogle Scholar
  25. Goldstein, S. (2017). Bohmian mechanics. In E. Zalta (Ed.), The stanford encyclopedia of philosophy (summer 2017 edition). https://plato.stanford.edu/archives/sum2017/entries/qm-bohm/.
  26. Hasegawa, Y. (2012). Entanglement between degrees of freedom in a single-particle system revealed in neutron interferometry. Foundations of Physics, 42, 29–45.CrossRefGoogle Scholar
  27. Haslanger, S. (1989). Endurance and temporary intrinsics. Analysis, 49(3), 119–25.CrossRefGoogle Scholar
  28. Held, C. (2018). The Kochen-Specker theorem. In E. Zalta (Ed.), The stanford encyclopedia of philosophy. (spring 2018 edition). https://plato.stanford.edu/archives/spr2018/entries/kochen-specker/.
  29. Hughes, R. I. G. (1989). The Structure and interpretation of quantum mechanics. Cambridge, MA: Harvard University Press.Google Scholar
  30. Laudisa, F., & Carlo, R. (2013). Relational quantum mechanics. In E. Zalta (Ed.), The stanford encyclopedia of philosophy (summer 2013 edition). https://plato.stanford.edu/archives/sum2013/entries/qm-relational/.
  31. Lewis, P. J. (2016). Quantum ontology: A guide to the metaphysics of quantum mechanics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Lowe, E. J. (1994). Vague identity and quantum indeterminacy. Analysis, 54, 110–114.CrossRefGoogle Scholar
  33. Vernaz-Gris, P. A., Keller, S. P., Walborn, T., Coudreau, P., & Milman, A. K. (2014). Continuous discretization of infinite dimensional Hilbert spaces. Physics Review A,.  https://doi.org/10.1103/PhysRevA.89.052311.Google Scholar
  34. Peres, A. (2002). Quantum theory: Concepts and methods. Dordrecht: Kluwer.CrossRefGoogle Scholar
  35. Rovelli, C. (1996). Relational quantum mechanics. International Journal of Theoretical Physics, 35, 1637–1678.CrossRefGoogle Scholar
  36. Skow, B. (2010). Deep metaphysical indeterminacy. Philosophical Quarterly, 60, 851–858.CrossRefGoogle Scholar
  37. Smith, N. J. J., & Rosen, G. (2004). Worldly indeterminacy: A rough guide. Australasian Journal of Philosophy, 82, 185–198.CrossRefGoogle Scholar
  38. Torza, A. (2017). Quantum metaphysical indeterminacy and worldly incompleteness. Synthese, 88, 1–14.Google Scholar
  39. Unger, P. (1980). The problem of the many. Midwest Studies in Philosophy, 5, 411–468.CrossRefGoogle Scholar
  40. Wallace, D. (2013). A prolegomenon to the ontology of the Everett interpretation. In D. Albert & A. Ney (Eds.), The wave function: Essays in the metaphysics of quantum mechanics (pp. 203–222). Oxford: Oxford UP.CrossRefGoogle Scholar
  41. Wallace, D. ms. What is orthodox quantum mechanics? https://arxiv.org/abs/1604.05973.
  42. Williams, R. (2008). Multiple actualities and ontically vague identity. Philosophical Quarterly, 58, 134–154.Google Scholar
  43. Wilson, J. M. (2012). Fundamental determinables. Philosophers’ Imprint, 12, 1–17.Google Scholar
  44. Wilson, J. M. (2013). A determinable-based account of metaphysical indeterminacy. Inquiry, 56, 359–385.CrossRefGoogle Scholar
  45. Wilson, J. M. (2016). Are there indeterminate states of affairs? Yes. In E. Barnes (Ed.), Current controversies in metaphysics (pp. 105–125). Abingdon: Routledge.Google Scholar
  46. Wilson, J. M. (2017). Determinables and determinates. In E. Zalta (Ed.), The stanford encyclopedia of philosophy (spring 2017 edition). https://plato.stanford.edu/archives/spr2017/entries/determinatedeterminables/.
  47. Wolff, J. (2015). Spin as a determinable. Topoi, 34, 379–386.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of GenevaGenevaSwitzerland
  2. 2.Department of PhilosophyUniversity of TorontoTorontoCanada

Personalised recommendations