Philosophical Studies

, Volume 176, Issue 10, pp 2551–2561 | Cite as

In defence of utterly indiscernible entities

  • Bahram AssadianEmail author


Are there entities which are just distinct, with no discerning property or relation? Although the existence of such utterly indiscernible entities is ensured by mathematical and scientific practice, their legitimacy faces important philosophical challenges. I will discuss the most fundamental objections that have been levelled against utter indiscernibles, argue for the inadequacy of the extant arguments to allay perplexity about them, and put forward a novel defence of these entities against those objections.


Identity Indiscernibility Utter indiscernibility Naturalism Objecthood 


  1. Benacerraf, P. (1965). What numbers could not be. Philosophical Review, 74(1), 47–73.CrossRefGoogle Scholar
  2. Black, M. (1952). The identity of indiscernibles. Mind, 61, 153–164.CrossRefGoogle Scholar
  3. Button, T. (2006). Realistic structuralism’s identity crisis: A hybrid solution. Analysis, 66(3), 216–222.CrossRefGoogle Scholar
  4. Button, T. (2017). Grades of discrimination: Indiscernibility, symmetry, and relativity. Notre Dame Journal of Formal Logic, 58(4), 527–553.CrossRefGoogle Scholar
  5. Button, T., & Walsh, S. (2018). Philosophy and model theory. Oxford: Oxford University Press.CrossRefGoogle Scholar
  6. Cantor, G. (1895). Contributions to the founding of the theory of transfinite numbers (P. E. B. Jourdain, Trans.). New York: Dover.Google Scholar
  7. Caulton, A., & Butterfield, J. (2012). On kinds of indiscernibility in logic and metaphysics. British Journal for the Philosophy of Science, 63(1), 27–84.CrossRefGoogle Scholar
  8. De Clercq, R. (2012). On some putative graph-theoretic counterexamples to the principle of the identity of indiscernibles. Synthese, 187(2), 661–672.CrossRefGoogle Scholar
  9. Frege, G. (1892). Rezension von: Georg Cantor, Zur Lehre von Transfiniten. Gesammelte Abhandlungen aus der Zietschrift für Philosophie und Philosophische Kritik. Zietschrift für Philosophie und Philosophische Kritik, 100, 269–72. Page reference is to Frege (1967). Kleine Schriften. Hildenscheim: Olms.Google Scholar
  10. Frege, G. (1899). On Mr. H. Schubert’s numbers. In B. McGuinness (Ed.), Collected papers on mathematics, logic and philosophy (pp. 249–272). New York: Basil Blackwell.Google Scholar
  11. Hallett, M. (1984). Cantorian set theory and limitation of size. Oxford: Clarendon Press.Google Scholar
  12. Hellman, G. (2004). Russell’s absolutism vs. (?) structuralism. In G. Link (Ed.), One hundred years of Russell’s Paradox: Mathematics, logic, philosophy (pp. 249–272). Berlin: Walter de Gruyter & Co.Google Scholar
  13. Hellman, G. (2005). Structuralism. In S. Shapiro (Ed.), The Oxford Handbook of philosophy of mathematics and logic (pp. 536–562). Oxford: Oxford University Press.CrossRefGoogle Scholar
  14. Keränen, J. (2001). The identity problem for realist structuralism. Philosophia Mathematica, 9(3), 308–330.CrossRefGoogle Scholar
  15. Leitgeb, H., & Ladyman, J. (2008). Criteria of identity and structuralist ontology. Philosophia Mathematica, 16(3), 388–396.CrossRefGoogle Scholar
  16. MacBride, F. (2006). What constitutes the numerical diversity of mathematical objects? Analysis, 66(289), 63–69.CrossRefGoogle Scholar
  17. Muller, F. A., & Seevinck, M. (2009). Discerning elementary particles. Philosophy of Science, 76(2), 179–200.CrossRefGoogle Scholar
  18. Quine, V. V. O. (1970). Philosophy of logic. Cambridge, MA: Harvard University Press.Google Scholar
  19. Saunders, S. (2003). Physics and Leibniz’s principles. In K. Brading & E. Castellani (Eds.), Symmetries in physics: Philosophical reflections. Cambridge: Cambridge University Press.Google Scholar
  20. Saunders, S. (2006). Are quantum particles objects? Analysis, 66(289), 52–63.CrossRefGoogle Scholar
  21. Shapiro, S. (1997). Philosophy of mathematics: Structure and ontology. New York: Oxford University Press.Google Scholar
  22. Shapiro, S. (2006). Structure and identity. In F. MacBride (Ed.), Identity and modality (pp. 34–69). Oxford: Oxford University Press.Google Scholar
  23. Shapiro, S. (2008). Identity, indiscernibility, and ante rem structuralism: The tale of $i$ and $-i$. Philosophia Mathematica, 16(3), 285–309.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations