Philosophical Studies

, Volume 176, Issue 9, pp 2411–2428 | Cite as

Fish and microchips: on fish pain and multiple realization

  • Matthias MichelEmail author


Opponents to consciousness in fish argue that fish do not feel pain because they do not have a neocortex, which is a necessary condition for feeling pain. A common counter-argument appeals to the multiple realizability of pain: while a neocortex might be necessary for feeling pain in humans, pain might be realized differently in fish. This paper argues, first, that it is impossible to find a criterion allowing us to demarcate between plausible and implausible cases of multiple realization of pain without running into a circular argument. Second, opponents to consciousness in fish cannot be provided with reasons to believe in the multiple realizability of pain. I conclude that the debate on the existence of pain in fish is impossible to settle by relying on the multiple realization argument.


Multiple realization Fish Pain Consciousness Animal consciousness Animal sentience 


  1. Aizawa, K., & Gillett, C. (2009). The (multiple) realization of psychological and other properties in the sciences. Mind and Language, 24(2), 181–208.Google Scholar
  2. Allen, C. (2004). Animal pain. Noûs, 38(4), 617–643.Google Scholar
  3. Bain, D. (2011). The imperative view of pain. Journal of Consciousness Studies, 18(9–10), 164–185.Google Scholar
  4. Barron, A. B., & Klein, C. (2016). What insects can tell us about the origins of consciousness. Proceedings of the National Academy of Sciences, 113(18), 4900–4908.Google Scholar
  5. Baumgartner, U., Iannetti, G. D., Zambreanu, L., Stoeter, P., Treede, R.-D., & Tracey, I. (2010). Multiple somatotopic representations of heat and mechanical pain in the operculo-insular cortex: A high-resolution fMRI study. Journal of Neurophysiology, 104(5), 2863–2872.Google Scholar
  6. Baysan, U. (2015). Realization relations in metaphysics. Minds and Machines, 25(3), 247–260.Google Scholar
  7. Bentham, J. (1789). Introduction to the principles of morals and legislation. Oxford: Clarendon.Google Scholar
  8. Beukema, J. J. (1969). Angling experiments with carp. Netherlands Journal of Zoology, 20(1), 81–92.Google Scholar
  9. Birch, J. (2017). Animal sentience and the precautionary principle. Animal Sentience, 017017, 1–15.Google Scholar
  10. Block, N. (1978). Troubles with functionalism. Minnesota Studies in the Philosophy of Science, 9(1968), 261–325.Google Scholar
  11. Block, N. (1995). On a confusion about a function of consciousness. The Behavioral and Brain Sciences, 18(2), 227–247.Google Scholar
  12. Block, N. J., & Fodor, J. (1972). What psychological states are not. The Philosophical Review, 81(2), 159.Google Scholar
  13. Braithwaite, V. (2010). Do fish feel pain. Oxford: Oxford University Press.Google Scholar
  14. Braithwaite, V. A., & Droege, P. (2016). Why human pain can’t tell us whether fish feel pain. Animal Sentience, 009(Commentary on Key on Fish Pain), 1–2.Google Scholar
  15. Brooks, J. C., Zambreanu, L., Godinez, A., Craig, A. D., & Tracey, I. (2005). Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. NeuroImage, 27(1), 201–209.Google Scholar
  16. Carruthers, P. (2000). Phenomenal consciousness: A naturalistic theory. Cambridge: Cambridge University Press.Google Scholar
  17. Carruthers, P. (2005). Why the question of animal consciousness might not matter very much. Philosophical Psychology, 18(1), 83–102.Google Scholar
  18. Carruthers, P. (2017). Valence and value. Philosophy and Phenomenological Research. Scholar
  19. Cecchetto, G., Milanese, L., Giordano, R., Viero, A., Suma, V., & Manara, R. (2013). Looking at the missing brain: Hydranencephaly case series and literature review. Pediadric Neurology, 48(2), 152–158.Google Scholar
  20. Cerrato, P., Lentini, A., Baima, C., Grasso, M., Azzaro, C., Bosco, G., et al. (2005). Pseudo-ulnar sensory loss in a patient from a small cortical infarct of the postcentral knob. Neurology, 64(11), 1981–1982.Google Scholar
  21. Chalmers, D. J. (1995). Facing up to the problem of consciousness. Journal of Conscious Studies, 2(3), 200–219.Google Scholar
  22. Clark, A. (2005). Painfulness is not a quale. In M. Aydede (Ed.), Pain: New essays on its nature and the methodology of its study (pp. 177–197). Cambridge, MA: MIT Press.Google Scholar
  23. Cutter, B., & Tye, M. (2011). Tracking representationalism and the painfulness of pain. Philosophical Issues, 21(1), 90–109.Google Scholar
  24. Damasio, A., & Carvalho, G. B. (2013). The nature of feelings: Evolutionary and neurobiological origins. Nature Reviews Neuroscience, 14(2), 143–152.Google Scholar
  25. Dawkins, M. (2015). Animal welfare and the paradox of animal consciousness. Advances in the Study of Behavior, 47, 5–38.Google Scholar
  26. Derbyshire, S. W. G. (2016). Fish lack the brains and the psychology for pain. Animal Sentience Derbyshire Commentary on Key on Fish Pain, 025, 1–4.Google Scholar
  27. Dinets, V. (2016). No cortex, no cry (commentary on key on fish pain). Animal Sentience, 13, 7.Google Scholar
  28. Dunlop, R., Millsopp, S., & Laming, P. (2006). Avoidance learning in goldfish (Carassius auratus) and trout (Oncorhynchus mykiss) and implications for pain perception. Applied Animal Behaviour Science, 97(2–4), 255–271.Google Scholar
  29. Edelman, D. B., Baars, B. J., & Seth, A. K. (2005). Identifying hallmarks of consciousness in non-mammalian species. Consciousness and Cognition, 14(1), 169–187.Google Scholar
  30. Edelman, D. B., & Seth, A. K. (2009). Animal consciousness: A synthetic approach. Trends in Neurosciences, 32(9), 476–484.Google Scholar
  31. Elwood, R. (2012). Evidence for pain in decapod crustaceans. Animal Welfare, 21(S2), 23–27.Google Scholar
  32. Elwood, R. W. (2016). A single strand of argument with unfounded conclusion. Animal Sentience Elwood Commentary on Key on Fish Pain, 026, 1–3.Google Scholar
  33. Ferrier, D. (1876). The functions of the brain. London: Smith, Elder and Co.Google Scholar
  34. Fodor, J. (2000). Special sciences: Still autonomous after all these years: A reply to Jaegwon Kim’s multiple realization and the metaphysics of reduction. In Critical condition. Cambridge, MA: MIT Press.Google Scholar
  35. Fodor, J. A. (1974). Special sciences (or: the disunity of science as a working hypothesis). Synthese, 28(2), 97–115.Google Scholar
  36. Frot, M., Faillenot, I., & Mauguière, F. (2014). Processing of nociceptive input from posterior to anterior insula in humans. Human Brain Mapping, 35(11), 5486–5499.Google Scholar
  37. Gillett, C. (2003). The metaphysics of realization, multiple realizability, and the special sciences. The Journal of Philosophy, 100(11), 591–603.Google Scholar
  38. Godfrey-Smith, P. (2016). Pain in parallel. Animal Sentience, 1, 21.Google Scholar
  39. Godfrey-Smith, P. (2017). Other minds: The octopus, the sea, and the deep origins of consciousness. New York: Harper-Collins.Google Scholar
  40. Goltz, F. L. (1869). Beiträge zur Lehre von den Functionen der Nervencentren des Frosches. Berlin: A. Hirschwald.Google Scholar
  41. Griffin, D. R. (1976). The question of animal awareness: Evolutionary continuity of mental experience. New York: Rockefeller University Press.Google Scholar
  42. Gross, J., Schnitzler, A., Timmermann, L., & Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS Biology, 5(5), 1168–1173.Google Scholar
  43. Hall, R. J. (2008). If it itches, scratch!. Australasian Journal of Philosophy, 86(4), 525–535.Google Scholar
  44. Haugeland, J. (1978). The nature and plausibility of cognitivism. Behavioral and Brain Sciences, 2, 215–260.Google Scholar
  45. Henderson, L. A., Rubin, T. K., & Macefield, V. G. (2011). Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Human Brain Mapping, 32(10), 1592–1601.Google Scholar
  46. Huntingford, F. A., Adams, C., Braithwaite, V. A., Kadri, S., Pottinger, T. G., Sandøe, P., et al. (2006). Current issues in fish welfare. Journal of Fish Biology, 68, 332–372.Google Scholar
  47. Ikeda, T., Yoshida, M., & Isa, T. (2011). Lesion of primary visual cortex in monkey impairs the inhibitory but not the facilitatory cueing effect on saccade. Journal of Cognitive Neuroscience, 23(5), 1160–1169.Google Scholar
  48. Isa, T., & Yoshida, M. (2009). Saccade control after V1 lesion revisited. Current Opinion in Neurobiology, 19(6), 608e614.Google Scholar
  49. Jones, R. C. (2013). Science, sentience, and animal welfare. Biology and Philosophy, 28(1), 1–30.Google Scholar
  50. Kato, R., Takaura, K., Ikeda, T., Yoshida, M., & Isa, T. (2011). Contribution of the retino-tectal pathway to visually guided saccades after lesion of the primary visual cortex in monkeys. European Journal of Neuroscience, 33(11), 1952–1960.Google Scholar
  51. Key, B. (2015). Fish do not feel pain and its implications for understanding phenomenal consciousness. Biology and Philosophy, 30(2), 149–165.Google Scholar
  52. Key, B. (2016). Why fish do not feel pain. Animal Sentience, 3(Brian Key on Fish Pain), 1–33.Google Scholar
  53. Key, B., Arlinghaus, R., & Browman, H. I. (2016). Insects cannot tell us anything about subjective experience or the origin of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 3813.Google Scholar
  54. Klein, A. (2017). The curious case of the decapitated frog: On experiment and philosophy. British Journal for the History of Philosophy, 0(4), 1–28.Google Scholar
  55. Klein, C. (2007). An imperative theory of pain. Journal of Philosophy, 104(10), 517–532.Google Scholar
  56. LeDoux, J. (2012). Rethinking the emotional brain. Neuron, 73(4), 653–676.Google Scholar
  57. LeDoux, J. E., & Brown, R. (2017). A higher-order theory of emotional consciousness. Proceedings of the National Academy of Sciences, 114(10), E2016–E2025.Google Scholar
  58. Levin, J. (2017). Functionalism. In E. N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, winter 2017 edition.Google Scholar
  59. Lewes, G. H. (1873). Sensation in the spinal cord. Nature, 9, 83–84.Google Scholar
  60. Lewes, G. H. (1877). Problems of life and mind, second series: The physical basis of mind. London: Trübner.Google Scholar
  61. Lieberman, M. D., & Eisenberger, N. I. (2015). The dorsal anterior cingulate cortex is selective for pain: Results from large-scale reverse inference. Proceedings of the National Academy of Sciences, 112(49), 15250–15255.Google Scholar
  62. Lockwood, P. L., Iannetti, G. D., & Haggard, P. (2013). Transcranial magnetic stimulation over human secondary somatosensory cortex disrupts perception of pain intensity. Cortex, 49(8), 2201–2209.Google Scholar
  63. Loeser, J. D., & Treede, R. D. (2008). The Kyoto protocol of IASP Basic Pain Terminology. Pain, 137(3), 473–477.Google Scholar
  64. Mancini, F., Haggard, P., Iannetti, G. D., Longo, M. R., & Sereno, M. I. (2012). Fine-grained nociceptive maps in primary somatosensory cortex. Journal of Neuroscience, 32(48), 17155–17162.Google Scholar
  65. Manzotti, R. (2016). No evidence that pain is painful neural process. Animal Sentience, 17, 2015–2017.Google Scholar
  66. Mazzola, L., Isnard, J., Peyron, R., Guénot, M., & Mauguière, F. (2009). Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain, 146(1–2), 99–104.Google Scholar
  67. McAbee, G. N., Chan, A., & Erde, E. L. (2000). Prolonged survival with hydranencephaly: Report of two patients and literature review. Pediatric Neurology, 23(1), 80–84.Google Scholar
  68. Merker, B. (2007). Consciousness without a cerebral cortex: A challenge for neuroscience and medicine. Behavioral and Brain Sciences, 30(1), 63–81.Google Scholar
  69. Merker, B. (2008). Life expectancy in hydranencephaly. Clinical Neurology and Neurosurgery, 110(3), 213–214.Google Scholar
  70. Merker, B. (2016). How not to move the line drawn on pain. Animal Sentience, 064, 1–3.Google Scholar
  71. Midgley, M. (1983). Animals and why they matter: A journey around the species barrier. Harmondsworth: Pelican Books.Google Scholar
  72. Moayedi, M. (2014). All roads lead to the insula. Pain, 155(10), 1920–1921.Google Scholar
  73. Nagel, T. (1974). What is it like to be a bat? The Philosophical Review, 83(4), 435–450.Google Scholar
  74. Navratilova, E., Xie, J. Y., Meske, D., Qu, C., Morimura, K., Okun, A., et al. (2015). Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. Journal of Neuroscience, 35(18), 7264–7271.Google Scholar
  75. Ng, Y.-K. (2016). Could fish feel pain? A wider perspective (Ng commentary on key on fish pain). Animal Sentience, 19, 1–3.Google Scholar
  76. Omori, S., Isose, S., Otsuru, N., Nishihara, M., Kuwabara, S., Inui, K., et al. (2013). Somatotopic representation of pain in the primary somatosensory cortex (S1) in humans. Clinical Neurophysiology, 124(7), 1422–1430.Google Scholar
  77. Ostrowsky, K. (2002). Representation of pain and somatic sensation in the human insula: A study of responses to direct electrical cortical stimulation. Cerebral Cortex, 12(4), 376–385.Google Scholar
  78. Panksepp, J. (2011). Cross-species affective neuroscience decoding of the primal affective experiences of humans and related animals. PLoS ONE, 6(9), e21236.Google Scholar
  79. Pavone, P., Praticò, A. D., Vitaliti, G., Ruggieri, M., Rizzo, R., Parano, E., et al. (2014). Hydranencephaly: Cerebral spinal fluid instead of cerebral mantles. Italian Journal of Pediatrics, 40(1), 79.Google Scholar
  80. Pflüger, E. (1853). Die sensorischen Functionen des Rückenmarks der Wirbelthiere: nebst einer neuen Lehre über die Leitungsgesetze der Reflexionen. Berlin: Hirschwald.Google Scholar
  81. Polger, T. W., & Shapiro, L. A. (2016). The multiple realization book. Oxford: Oxford University Press.Google Scholar
  82. Prinz, J. (2012). The conscious brain. Oxford: Oxford University Press.Google Scholar
  83. Putnam, H. (1967). The nature of mental states. In Mind, language and reality—Philisophical papers (Vol. 2, pp. 603–610). New York: Cambridge University Press.Google Scholar
  84. Qu, C., King, T., Okun, A., Lai, J., Fields, H. L., & Porreca, F. (2011). Lesion of the rostral anterior cingulate cortex eliminates the aversiveness of spontaneous neuropathic pain following partial or complete axotomy. Pain, 152(7), 1641–1648.Google Scholar
  85. Rollin, B. (1989). The unheeded cry. Oxford: Oxford University Press.Google Scholar
  86. Rose, J. D. (2007). Anthropomorphism and ’mental welfare’ of fishes. Diseases of Aquatic Organisms, 75(2), 139–154.Google Scholar
  87. Rose, J. D., Arlinghaus, R., Cooke, S. J., Diggles, B. K., Sawynok, W., Stevens, E. D., et al. (2014). Can fish really feel pain? Fish and Fisheries, 15(1), 97–133.Google Scholar
  88. Rosenthal, D. (1986). Two concepts of consciousness. Philosophical Studies, 49(3), 329–359.Google Scholar
  89. Segerdahl, A. R., Mezue, M., Okell, T. W., Farrar, J. T., & Tracey, I. (2015). The dorsal posterior insula subserves a fundamental role in human pain. Nature Neuroscience, 18(4), 499–500.Google Scholar
  90. Segner, H. (2016). Why babies do not feel pain, or: How structure-derived functional interpretations can go wrong. Animal Sentience, 1, 26.Google Scholar
  91. Seth, A. K. (2016). Why fish pain cannot and should not be ruled out. Animal Sentience, 3, 1–5.Google Scholar
  92. Shewmon, D. A., Holmes, G. L., & Byrne, P. A. (1999). Consciousness in congenitally decorticate children: Developmental vegetative state as self-fulfilling prophecy. Developmental Medicine and Child Neurology, 41(6), 364–374.Google Scholar
  93. Singer, P. (1975). Animal liberation: A new ethics for the treatment of animals. London: Jonathan Cape.Google Scholar
  94. Smith, E. S. J., & Lewin, G. R. (2009). Nociceptors: A phylogenetic view. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(12), 1089–1106.Google Scholar
  95. Sneddon, L. (2011). Pain perception in fish: Evidence and implications for the use of fish. Journal of Consciousness Studies, 18(9–10), 209–229.Google Scholar
  96. Sneddon, L. U., Braithwaite, V. A., & Gentle, M. J. (2003). Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proceedings of the Royal Society B: Biological Sciences, 270(1520), 1115–1121.Google Scholar
  97. Snow, P. J., Plenderleith, M. B., & Wright, L. L. (1993). Quantitative study of primary sensory neurone populations of three species of elasmobranch fish. Journal of Comparative Neurology, 334(1), 97–103.Google Scholar
  98. Spering, M., & Carrasco, M. (2015). Acting without seeing: Eye movements reveal visual processing without awareness. Trends in Neurosciences, 38(4), 247–258.Google Scholar
  99. Tye, M. (1995). A representational theory of pains and their phenomenal character. Philosophical Perspectives, 9(1995), 223–239.Google Scholar
  100. Tye, M. (2000). Consciousness, color, and content. Cambridge: MIT Press.Google Scholar
  101. Tye, M. (2017). Tense bees and shell-shocked crabs: Are animals conscious?. Oxford: Oxford University Press.Google Scholar
  102. Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pain. Pain, 154(3), 334–344.Google Scholar
  103. Weiskopf, D. A. (2011). The functional unity of special science kinds. British Journal for the Philosophy of Science, 62(2), 233–258.Google Scholar
  104. Weiskrantz, L. (2009). Blindsight: A case study spanning 35 years and new developments (2nd ed.). Oxford: Oxford University Press.Google Scholar
  105. Werth, R. (2007). Residual visual function after loss of both cerebral hemispheres in infancy. Investigative Ophthalmology and Visual Science, 48(7), 3098–3106.Google Scholar
  106. Wilson, R. A., & Craver, C. F. (2006). Realization: Metaphysical and scientific perspectives. In P. Thagard (Ed.), Handbook of the philosophy of psychology and cognitive science (pp. 81–104). Amsterdam: Elsevier.Google Scholar
  107. Zhang, Z. G., Hu, L., Hung, Y. S., Mouraux, A., & Iannetti, G. D. (2012). Gamma-band oscillations in the primary somatosensory cortex—A direct and obligatory correlate of subjective pain intensity. Journal of Neuroscience, 32(22), 7429–7438.Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Sciences, Normes et DécisionsUniversité Paris-SorbonneParisFrance

Personalised recommendations