Advertisement

Philosophical Studies

, Volume 176, Issue 6, pp 1513–1533 | Cite as

The unique hues and the argument from phenomenal structure

  • Wayne WrightEmail author
Article
  • 79 Downloads

Abstract

Hardin’s (Color for philosophers: unweaving the rainbow, Hackett, Indianapolis, 1988) empirically-grounded argument for color eliminativism has defined the color realism debate for the last 30 years. By Hardin’s own estimation, phenomenal structure—the unique/binary hue distinction in particular—poses the greatest problem for color realism. Examination of relevant empirical findings shows that claims about the unique hues which play a central role in the argument from phenomenal structure should be rejected. Chiefly, contrary to widespread belief amongst philosophers and scientists, the unique hues do not play a fundamental role in determining all color appearances. Among the consequences of this result is that greater attention should be paid to certain proposals for putting the structure of phenomenal color into principled correspondence with surface reflectance properties. While color realism is not fully vindicated, it has much greater empirical plausibility than previously thought.

Keywords

Color Unique hues Opponent colors Hering Hue cancellation Hue scaling Surface reflectance Munsell 

Notes

Acknowledgements

I am grateful to two anonymous referees of this journal for their helpful comments on an earlier version of this paper. I would also like to thank Kimberly Jameson and A. Kimball Romney for discussions that greatly aided my thinking on the issues addressed herein.

References

  1. Abramov, L., & Gordon, J. (1988). Scaling procedures for specifying color appearance. Color Research and Application, 13, 146–152.Google Scholar
  2. Abramov, L., & Gordon, J. (1994). Color appearance: On seeing red—or yellow, or green, or blue. Annual Review of Psychology, 45, 451–485.Google Scholar
  3. Abramov, L., & Gordon, J. (2005). Seeing unique hues. Journal of the Optical Society of the Optical Society of America A, 22, 2143–2153.Google Scholar
  4. Arstila, V. (2017). What makes unique hues unique? Synthese.  https://doi.org/10.1007/s11229-017-1313-3.
  5. Averill, E. (2005). Toward a projectivist account of color. Journal of Philosophy, 102, 217–234.Google Scholar
  6. Bosten, J., & Boehm, A. (2014). Empirical evidence for unique hues? Journal of the Optical Society of America A, 31, A385–A393.Google Scholar
  7. Bosten, J., & Lawrence-Owen, A. (2014). No difference in variability of unique hue selections and binary hue selections. Journal of the Optical Society of America A, 31, A357–A364.Google Scholar
  8. Broackes, J. (1997). Could we take lime, purple, orange, and teal as unique hues? Behavioral and Brain Sciences, 20, 183–184.Google Scholar
  9. Broackes, J. (2011). Where do the unique hues come from? Review of Philosophy and Psychology, 2, 601–608.Google Scholar
  10. Burns, S., Elsner, A., Pokorny, J., & Smith, V. (1984). The Abney effect: Chromaticity coordinates of unique and other constant hues. Vision Research, 24, 479–489.Google Scholar
  11. Byrne, A., & Hilbert, D. (2003a). Color realism and color science. Behavioral and Brain Sciences, 26, 3–21.Google Scholar
  12. Byrne, A., & Hilbert, D. (2003b). Color realism redux. Behavioral and Brain Sciences, 26, 52–63.Google Scholar
  13. Chiao, C., Cronin, T., & Osorio, D. (2000). Color signals in natural scenes: Characteristics of reflectance spectra and effects of natural illuminants. Journal of the Optical Society of America A, 17, 218–224.Google Scholar
  14. Churchland, P. M. (2007). On the reality (and diversity) of objective colors: How color-qualia space is a map of reflectance-profile space. Philosophy of Science, 74, 119–149.Google Scholar
  15. Conway, B., & Stoughton, C. (2009). Response: Towards a neural representation for unique hues. Current Biology, 19, R442–R443.Google Scholar
  16. Conway, B., & Tsao, D. (2009). Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex. Proceedings of the National Academy of Sciences, 42, 18034–18039.Google Scholar
  17. Cook, R., Kay, P., & Regier, T. (2005). The world color survey database: History and use. In H. Cohen & C. Lefebvre (Eds.), Handbook of categorisation in the cognitive sciences. London: Elsevier.Google Scholar
  18. Craven, B., & Foster, D. (1992). An operational approach to colour constancy. Vision Research, 32, 1359–1366.Google Scholar
  19. Crone, R. (1999). A history of color: The evolution of theories of light and color. Dordrecht: Kluwer Academic Publishers.Google Scholar
  20. De Valois, R., Abramov, I., & Jacobs, G. (1964). Analysis of response patterns of LGN cells. Journal of the Optical Society of America, 56, 966–977.Google Scholar
  21. Dimmick, F., & Hubbard, M. (1939a). The spectral location of psychologically unique yellow, green, and blue. American Journal of Psychology, 52, 242–254.Google Scholar
  22. Dimmick, F., & Hubbard, M. (1939b). The spectral components of psychologically unique red. American Journal of Psychology, 52, 348–353.Google Scholar
  23. Forder, L., Bosten, J., He, X., & Franklin, A. (2017). A neural signature of the unique hues. Scientific Reports, 7, 1–8.Google Scholar
  24. Hardin, C. L. (1988). Color for philosophers: Unweaving the rainbow. Indianapolis: Hackett.Google Scholar
  25. Hardin, C. L. (1992). The virtues of illusion. Philosophical Studies, 68, 371–382.Google Scholar
  26. Hardin, C. L. (2003). A spectral reflectance doth not a color make. Journal of Philosophy, 100, 191–202.Google Scholar
  27. Hardin, C. L. (2005). Explaining basic color categories. Cross-Cultural Research: The Journal of Comparative Social Science, 39, 72–87.Google Scholar
  28. Hering, E. (1920/1964). Outlines of a theory of the light sense. Cambridge, MA: Harvard University Press.Google Scholar
  29. Hurvich, L. (1981). Color vision. Sunderland, MA: Sinauer Associates.Google Scholar
  30. Hurvich, L., & Jameson, D. (1957). An opponent-process theory of color vision. Psychological Review, 64, 384–404.Google Scholar
  31. Indow, Y. (1987). Psychologically unique hues in aperture and surface colors. Die Farbe, 34, 253–260.Google Scholar
  32. Indow, Y. (1988). Multidimensional studies of Munsell color solid. Psychological Review, 95, 456–470.Google Scholar
  33. Indow, Y. (1999). Predictions based on Munsell notation. I. Perceptual color differences. Color Research and Application, 24, 10–18.Google Scholar
  34. Isaac, I. (2014). Structural realism for secondary qualities. Erkenntnis, 79, 481–510.Google Scholar
  35. Jakab, Z., & McLaughlin, B. (2003). Why not color physicalism without color absolutism? Behavioral and Brain Sciences, 26, 34–35.Google Scholar
  36. Jameson, K. (2010). Where in the world color survey is the support for the Hering primaries as the basis for color categorization? In J. Cohen & M. Matthen (Eds.), Color ontology and color science. Cambridge, MA: MIT Press.Google Scholar
  37. Jameson, K., & D’Andrade, R. (1997). It’s not really red, green, yellow, blue: An inquiry into perceptual color space. In C. Hardin & L. Maffi (Eds.), Color categories in thought and language. Cambridge: Cambridge University Press.Google Scholar
  38. Jameson, D., & Hurvich, L. (1955). Some quantitative aspects of an opponent-colors theory. I. Chromatic responses and spectral saturation. Journal of the Optical Society of America, 45, 546–552.Google Scholar
  39. Jameson, D., & Hurvich, L. (1959). Perceived color and its dependence on focal, surrounding, and preceding stimulus variables. Journal of the Optical Society of America, 49, 890–898.Google Scholar
  40. Judd, D. (1951). Basic correlates of the visual stimulus. In S. Stevens (Ed.), Handbook of experimental psychology. New York: John Wiley & Sons.Google Scholar
  41. Koenderink, J. (2010). Color for the Sciences. Cambridge, MA: MIT Press.Google Scholar
  42. Komban, S., Alonso, J.-M., & Zaidi, Q. (2011). Darks are processed faster than lights. Journal of Neuroscience, 31, 8654–8658.Google Scholar
  43. Kuehni, R. (2004). Variability in unique hue selection: A surprising phenomenon. Color Research and Application, 29, 158–162.Google Scholar
  44. Kuehni, R. (2005). Focal color variability and unique hue stimulus variability”. Journal of Cognition and Culture, 5, 409–426.Google Scholar
  45. Kuehni, R. (2013). Color: An introduction to practice and principles. Hoboken, NJ: John Wiley & Sons.Google Scholar
  46. Kuehni, R., & Schwarz, A. (2008). Color ordered: A survey of color order systems from antiquity to the present. Oxford: Oxford University Press.Google Scholar
  47. Ladd-Franklin, C. (1929/1973). Colour and colour theories. New York: Arno Press.Google Scholar
  48. Logvinenko, A. (2012). A theory of unique hues and colour categories in the human colour vision. Color Research and Application, 37, 109–116.Google Scholar
  49. Logvinenko, A., & Beattie, L. (2011). Partial hue-matching. Journal of Vision, 11, 1–16.Google Scholar
  50. MacLeod, D. (2010). Into the neural maze. In J. Cohen & M. Matthen (Eds.), Color ontology and color science. Cambridge, MA: MIT Press.Google Scholar
  51. Malkoc, G., Kay, P., & Webster, M. (2005). Variations in normal color vision. IV. Binary hues and hue scaling. Journal of the Optical Society of America A, 22, 2154–2168.Google Scholar
  52. Maloney, L. (2003). Surface color perception in constrained environments. In R. Mausfeld & D. Heyer (Eds.), Colour perception: Mind and the physical world. London: Oxford University Press.Google Scholar
  53. Matthen, M. (2005). Seeing, doing, and knowing. Oxford: Oxford University Press.Google Scholar
  54. Mollon, J. (2009). A neural basis for unique hues? Current Biology, 19, R441–R442.Google Scholar
  55. Munsell Color Company. (1976). Munsell book of color: Matte finish collection. Baltimore: Munsell.Google Scholar
  56. Nascimento, S., Foster, D., & Amano, K. (2005). Psychophysical estimates of the number of spectral reflectance basis functions needed to reproduce natural scenes. Journal of the Optical Society of America A, 22, 1017–1022.Google Scholar
  57. Ocelak, R. (2014). The myth of unique hues. Topoi, 34, 513–522.Google Scholar
  58. Oxtoby, E., & Foster, D. (2005). Perceptual limits on low-dimensional models of Munsell reflectance spectra. Perception, 34, 961–966.Google Scholar
  59. Palmer, S. (1999). Vision science: Photons to phenomenology. Cambridge, MA: MIT Press.Google Scholar
  60. Regier, T., Kay, P., & Cook, R. (2005). Focal colors are universal after all. Proceedings of the National Academy of Science, 102, 8386–8391.Google Scholar
  61. Romney, A. K. (2008). Relating reflectance spectra space to Munsell color appearance space. Journal of the Optical Society of America A, 25, 658–666.Google Scholar
  62. Saunders, B., & van Brakel, J. (1997). Are there nontrivial constraints on colour categorization? Behavioral and Brain Sciences, 20, 167–179.Google Scholar
  63. Stoughton, C., & Conway, B. (2008). Neural basis for unique hues. Current Biology, 18, R698–R699.Google Scholar
  64. Thompson, E. (1995). Colour vision. New York: Routledge.Google Scholar
  65. Valberg, A. (2001). Unique hues: An old problem for a new generation. Vision Research, 41, 1645–1657.Google Scholar
  66. Wandell, B. (1995). Foundations of vision. Sunderland, MA: Sinauer Associates.Google Scholar
  67. Webster, M. E., Miyahara, G. Malkoc, & Raker, V. (2000). Variations in normal color vision. II. Unique hues. Journal of the Optical Society of America A, 17, 1545–1555.Google Scholar
  68. Wool, L., Komban, S., Kremkow, J., Jansen, M., Li, X., Alonso, J.-M., et al. (2015). Salience of unique hues and implications for color theory. Journal of Vision, 15, 1–11.Google Scholar
  69. Wright, W. (2010). Perception, color, and realism. Erkenntnis, 73, 19–40.Google Scholar
  70. Wright, W. (2011). More on the origin of the hues: A reply to Broackes. Review of Philosophy and Psychology, 2, 629–641.Google Scholar
  71. Wright, W. (forthcoming). Eliminativism. In D. Brown & F. Macpherson (eds.) The Routledge handbook of philosophy of colour. London: Routledge.Google Scholar
  72. Wyszecki, G., & Stiles, W. S. (1982). Color science: Concepts and methods, quantitative data and formulae. New York: John Wiley & Sons.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhilosophyCalifornia State University, Long BeachLong BeachUSA

Personalised recommendations