Philosophical Studies

, Volume 176, Issue 2, pp 437–471 | Cite as

Studies in the logic of K-onfirmation

  • Clayton PetersonEmail author


This research article revisits Hempel’s logic of confirmation in light of recent developments in categorical proof theory. While Hempel advocated several logical conditions in favor of a purely syntactical definition of a general non-quantitative concept of confirmation, we show how these criteria can be associated to specific logical properties of monoidal modal deductive systems. In addition, we show that many problems in confirmation logic, such as the tacked disjunction, the problem of weakening with background knowledge and the problem of irrelevant conjunction, are also associated with specific logical properties and, incidentally, with some of Hempel’s logical conditions of adequacy. We discuss the raven paradox together with further objections against Hempel’s approach, showing how our analysis enables a clear understanding of the relationships between Hempel’s conditions, the problems in confirmation logic, and the properties of deductive systems.


Confirmation Modal logic Monoidal logic Tacked disjunction Monotonicity Irrelevant conjunction Raven paradox 



I am indebted to the comments and suggestions made by anonymous reviewers on previous drafts of this paper. I am also grateful to Stephan Hartmann as well as to the people of the Munich Center for Mathematical Philosophy, where I had the chance to work on that project. This work was financially supported by the Social Sciences and Humanities Research Council of Canada.


  1. Chellas, B. F. (1980). Modal logic: An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Crupi, V. (2015). Confirmation. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. Palo Alto: Stanford University.Google Scholar
  3. Crupi, V., & Tentori, K. (2010). Irrelevant conjunction: Statement and solution of a new paradox. Philosophy of Science, 77(1), 1–13.CrossRefGoogle Scholar
  4. Crupi, V., Tentori, K., & Gonzalez, M. (2007). On bayesian measures of evidential support: Theoretical and empirical issues. Philosophy of Science, 74(2), 229–252.CrossRefGoogle Scholar
  5. Fitelson, B. (2002). Putting the irrelevance back into the problem of irrelevant conjunction. Philosophy of Science, 69(4), 611–622.CrossRefGoogle Scholar
  6. Fitelson, B. (2006). The paradox of confirmation. Philosophy Compass, 1(1), 95–113.CrossRefGoogle Scholar
  7. Fitelson, B., & Hawthorne, J. (2010). How Bayesian confirmation theory handles the paradox of the ravens. In E. Eells, J. H. Fetzer (Eds.), The place of probability in science: In honor of Ellery Eells (1953–2006) (pp. 247–275). Springer: Dordrecht.Google Scholar
  8. Garson, J. (2006). Modal logic for philosophers. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. Gemes, K. (1993). Hypothetico-deductivism: Content and the natural axiomatization of theories. Philosophy of Science, 60(3), 477–487.CrossRefGoogle Scholar
  10. Gemes, K. (1998). Hypothetico-deductivism: The current state of play; The criterion of empirical significance: Endgame. Erkenntnis, 49(1), 1–20.CrossRefGoogle Scholar
  11. Girard, J.-Y. (1987). Linear logic. Theoretical Computer Science, 50(1), 1–102.CrossRefGoogle Scholar
  12. Goodman, N. (1983). Facts, fiction and forecast (4th ed.). Cambridge: Harvard University Press.Google Scholar
  13. Grimes, T. R. (1990). Truth, content, and the hypothetico-deductive method. Philosophy of Science, 57(3), 514–522.CrossRefGoogle Scholar
  14. Hawthorne, J., & Fitelson, B. (2004). Discussion: Re-solving irrelevant conjunction with probabilistic independence. Philosophy of Science, 71(4), 505–514.CrossRefGoogle Scholar
  15. Hempel, C. G. (1943). A purely syntactical definition of confirmation. The Journal of Symbolic Logic, 8(4), 122–143.CrossRefGoogle Scholar
  16. Hempel, C. G. (1945a). Studies in the logic of confirmation I. Mind, 54(213), 1–26.CrossRefGoogle Scholar
  17. Hempel, C. G. (1945b). Studies in the logic of confirmation II. Mind, 54(214), 97–121.CrossRefGoogle Scholar
  18. Huber, F. (2008). Hempel’s logic of confirmation. Philosophical Studies, 139(2), 181–189.CrossRefGoogle Scholar
  19. Hughes, G. E., & Cresswell, M. J. (1996). A new introduction to modal logic. Abingdon: Routledge.CrossRefGoogle Scholar
  20. Hyland, M., & De Paiva, V. (1993). Full intuitionistic linear logic (extended abstract). Annals of Pure and Applied Logic, 64(3), 273–291.CrossRefGoogle Scholar
  21. Maher, P. (1999). Inductive logic and the ravens paradox. Philosophy of Science, 66(1), 50–70.CrossRefGoogle Scholar
  22. Maher, P. (2004). Probability captures the logic of scientific confirmation. In C. Hitchcock (Ed.), Contemporary Debates in Philosophy of Science (pp. 69–93). Blackwell Publishing Ltd.Google Scholar
  23. Maher, P. (2005). Confirmation theory. In D. M. Borchert (Ed.), Encyclopedia of philosophy (2nd ed.). Basingstoke: Macmillan.Google Scholar
  24. Moretti, L. (2006). The tacking by disjunction paradox: Bayesianism versus hypothetico-deductivism. Erkenntnis, 64(1), 115–138.CrossRefGoogle Scholar
  25. Peterson, C. (2014a). Analyse de la structure logique des inférences légales et modélisation du discours juridique. Ph.D. thesis, Université de Montréal.Google Scholar
  26. Peterson, C. (2014b). The categorical imperative: Category theory as a foundation for deontic logic. Journal of Applied Logic, 12(4), 417–461.CrossRefGoogle Scholar
  27. Peterson, C. (2014c). Monoidal logics: How to avoid paradoxes. In A. Lieto, D. P. Radicioni, M. Cruciani (Eds.), Proceedings of the international workshop on artificial intelligence and cognition (AIC 2014) (Vol. 1315, pp. 122–133). CEUR Workshop Proceedings.Google Scholar
  28. Peterson, C. (2015). Contrary-to-duty reasoning: A categorical approach. Logica Universalis, 9(1), 47–92.CrossRefGoogle Scholar
  29. Peterson, C. (2016). A comparison between monoidal and substructural logics. Journal of Applied Non-Classical Logics, 26(2), 126–159.CrossRefGoogle Scholar
  30. Peterson, C., & Kulicki, P. (2016). Conditional normative reasoning with substructural logics: New paradoxes and De Morgan’s dualities. In O. Roy, A. Tamminga, & M. Willer (Eds.), Deontic logic and normative systems (pp. 220–236). London: College Publications.Google Scholar
  31. Schurz, G. (1991). Relevant deduction: From solving paradoxes towards a general theory. Erkenntnis, 35(1–3), 391–437.Google Scholar
  32. Sprenger, J. (2009). Hempel and the paradoxes of confirmation. In D. M. Gabbay, S. Hartmann, & J. Woods (Eds.), Handbook of the history of logic (Vol. 10, pp. 235–263). Amsterdam: Elsevier.Google Scholar
  33. Swinburne, R. G. (1971). The paradoxes of confirmation: A survey. American Philosophical Quarterly, 8(4), 318–330.Google Scholar
  34. Sylvan, R. & Nola, R. (1991). Confirmation without paradoxes. In G. Schurz & G. J. W. Dorn (Eds.), Advances in scientific philosophy: Essays in honour of Paul Weingartner on the occasion of the 60th anniversary of his birthday, Pozniań studies in the philosophy of the sciences and the humanities (Vol. 24, pp. 5–44). Amsterdam: Rodopi.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Munich Center for Mathematical PhilosophyLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations