Philosophical Studies

, Volume 175, Issue 7, pp 1661–1680 | Cite as

How to find an attractive solution to the liar paradox

  • Mark Pinder


The general thesis of this paper is that metasemantic theories can play a central role in determining the correct solution to the liar paradox. I argue for the thesis by providing a specific example. I show how Lewis’s reference-magnetic metasemantic theory may decide between two of the most influential solutions to the liar paradox: Kripke’s minimal fixed point theory of truth and Gupta and Belnap’s revision theory of truth. In particular, I suggest that Lewis’s metasemantic theory favours Kripke’s solution to the paradox over Gupta and Belnap’s. I then sketch how other standard criteria for assessing solutions to the liar paradox, such as whether a solution faces a so-called revenge paradox, fit into this picture. While the discussion of the specific example is itself important, the underlying lesson is that we have an unused strategy for resolving one of the hardest problems in philosophy.


Liar paradox Truth Metasemantics Magnetism Lewis Complexity 



I would like to thank Emma Borg, Benedict Eastaugh, Anthony Everett, Øystein Linnebo, Samir Okasha and a number of referees for this and other journals for helpful discussion and comments. This paper evolved from my PhD research, which was funded by the Arts and Humanities Research Council (UK), and was written while I was in receipt of the Analysis Studentship. I gratefully acknowledge the AHRC and the Analysis Trust for their support.


  1. Beall, J. C. (2007). Prolegomenon to future revenge. In J. C. Beall (Ed.), Revenge of the liar: New essays on the paradox (pp. 1–30). Oxford: Oxford University Press.Google Scholar
  2. Borg, E. (2004). Minimal semantics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. Borg, E. (2012). Pursuing meaning. Oxford: Oxford University Press.CrossRefGoogle Scholar
  4. Burge, T. (1979). Semantical paradox. Journal of Philosophy, 76(4), 169–198.CrossRefGoogle Scholar
  5. Burgess, J. P. (1986). The truth is never simple. Journal of Symbolic Logic, 51(3), 663–681.CrossRefGoogle Scholar
  6. Chomsky, N. (2000). New horizons in the study of language and mind. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  7. Cook, R. (2002). Counterintuitive consequences of the revision theory of truth. Analysis, 62(1), 16–22.CrossRefGoogle Scholar
  8. Cook, R. (2003). Still counterintuitive: A reply to Kremer. Analysis, 63(3), 257–261.CrossRefGoogle Scholar
  9. Davidson, D. (1973). Radical interpretation. Dialectica, 27(3/4), 313–328.CrossRefGoogle Scholar
  10. Edwards, D. (2013). Naturalness, representation and the metaphysics of truth. European Journal of Philosophy, 21(3), 384–401.Google Scholar
  11. Eklund, M. (2002). Inconsistent languages. Philosophy and Phenomenological Research, 64(2), 251–275.CrossRefGoogle Scholar
  12. Field, H. H. (2008). Saving truth from paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. Glanzberg, M. (2001). The liar in context. Philosophical Studies, 103(3), 217–251.CrossRefGoogle Scholar
  14. Glanzberg, M. (2004). A contextual-hierarchical approach to truth and the liar paradox. Journal of Philosophical Logic, 33(1), 27–88.CrossRefGoogle Scholar
  15. Gupta, A. (1982). Truth and paradox. Journal of Philosophical Logic, 11(1), 1–60.CrossRefGoogle Scholar
  16. Gupta, A., & Belnap, N. (1993). The revision theory of truth. Cambridge, MA: The MIT Press.Google Scholar
  17. Herzberger, H. G. (1982). Naive semantics and the liar paradox. Journal of Philosophy, 79(9), 479–497.CrossRefGoogle Scholar
  18. Kremer, M. (2002). Intuitive consequences of the revision theory of truth. Analysis, 62(4), 330–336.CrossRefGoogle Scholar
  19. Kripke, S. (1975). Outline of a theory of truth. Journal of Philosophy, 72(19), 690–716.CrossRefGoogle Scholar
  20. Kuhn, T. (1977). Objectivity, value judgment, and theory choice. The essential tension: Selected studies in scientific tradition and change (pp. 320–339). Chicago: University of Chicago Press.Google Scholar
  21. Leitgeb, H. (2005). What truth depends on. Journal of Philosophical Logic, 34(2), 155–192.CrossRefGoogle Scholar
  22. Leitgeb, H. (2007). What theories of truth should be like (but cannot be). Philosophy Compass, 2(2), 276–290.CrossRefGoogle Scholar
  23. Lewis, D. (1983). New work for a theory of universals. Australasian Journal of Philosophy, 62(3), 221–236.CrossRefGoogle Scholar
  24. Lewis, D. (1984). Putnam’s paradox. Australasian Journal of Philosophy, 62(3), 221–236.CrossRefGoogle Scholar
  25. Lewis, D. (1993). Mathematics is megethology. Philosophica Mathematica, 1(1), 3–23.CrossRefGoogle Scholar
  26. Ludlow, P. (2011). The philosophy of generative linguistics. Oxford: Oxford University Press.CrossRefGoogle Scholar
  27. Martin, R. L., & Woodruff, P. W. (1975). On representing ‘True-in-L’ in L. Philosophia, 5(3), 217–221.CrossRefGoogle Scholar
  28. Maudlin, T. (2004). Truth and paradox. Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. Patterson, D. (2009). Inconsistency theories of semantic paradox. Philosophy and Phenomenological Research, 79(2), 387–422.CrossRefGoogle Scholar
  30. Pinder, M. (2014). Borg's minimalism and the problem of paradox. In P. Stalmaszczyk (Ed.), Semantics and Beyond: Philosophical and Linguistic Inquiries (pp. 207–230). Berlin and Boston: De Gruyter.Google Scholar
  31. Pinder, M. (2015). The cognitivist account of meaning and the liar paradox. Philosophical Studies, 172(5), 1221–1242.CrossRefGoogle Scholar
  32. Scharp, K. (2013). Replacing truth. Oxford: Oxford University Press.CrossRefGoogle Scholar
  33. Schwarz, W. (2014). Against magnetism. Australasian Journal of Philosophy, 92(1), 17–36.CrossRefGoogle Scholar
  34. Shapiro, L. (2011). Expressibility and the liar’s revenge. Australasian Journal of Philosophy, 89(2), 297–314.CrossRefGoogle Scholar
  35. Weatherson, B. (2003). What good are counterexamples? Philosophical Studies, 115(1), 1–31.CrossRefGoogle Scholar
  36. Welch, P. (2001). On Gupta-Belnap revision theories of truth, Kripkean fixed points, and the next stable set. Bulletin of Symbolic Logic, 7(3), 345–360.CrossRefGoogle Scholar
  37. Williams, J. R. G. (2007). Eligibility and inscrutability. Philosophical Review, 116(3), 361–399.CrossRefGoogle Scholar
  38. Yaqūb, A. M. (1993). The liar speaks the truth: A defense of the revision theory of truth. Oxford: Oxford University Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of HertfordshireHertfordshireUK

Personalised recommendations