Advertisement

Philosophical Studies

, Volume 174, Issue 6, pp 1539–1560 | Cite as

Skill and motor control: intelligence all the way down

  • Ellen Fridland
Article

Abstract

When reflecting on the nature of skilled action, it is easy to fall into familiar dichotomies such that one construes the flexibility and intelligence of skill at the level of intentional states while characterizing the automatic motor processes that constitute motor skill execution as learned but fixed, invariant, bottom-up, brute-causal responses. In this essay, I will argue that this picture of skilled, automatic, motor processes is overly simplistic. Specifically, I will argue that an adequate account of the learned motor routines that constitute embodied skills cannot be given in a purely bottom-up, brute-causal fashion. Rather, motor control is intelligent all the way down. To establish this, I will first review two recent accounts of skill, Stanley and Krakauer (Front Hum Neurosci, 2013. doi: 10.3389/fnhum.2013.0050) and Papineau (R Inst Philos Suppl 73:175–196, 2013), which characterize the automatic motor control responsible for the fine-grained movements constitutive of motor skill as brute, low-level phenomena. I will then isolate five key features that should apply to skilled motor control, if these accounts are correct. Together, the accounts posit that motor control is: (1) ballistic, (2) invariant, (3) independent of general action trajectories, (4) Insensitive to semantic content, and (5) independent of personal-level intentions. In the final section of this paper, I will appeal to optimal control theory for empirical evidence to challenge the commitment to skilled action as qualified by the above features.

Keywords

Motor control Know how Skill Optimal control theory 

References

  1. Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists? Sports Biomechanics, 6, 224–243.CrossRefGoogle Scholar
  2. Beilock, S. (2007). Understanding skilled performance: Memory, attention, and ‘choking under pressure’. In T. Morris, P. Terry, & S. Gordon (Eds.), Sport & exercise psychology: International perspectives (pp. 153–166). Morgantown, WV: Fitness Information Technology.Google Scholar
  3. Beilock, S. (2010). Choke. New York: Free Press.Google Scholar
  4. Beilock, S., & Carr, T. (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology, 130, 701–725.CrossRefGoogle Scholar
  5. Beilock, S., Carr, T., MacMahon, C., & Starkes, J. (2002). When paying attention becomes counterproductive: Impact of divided versus skill-focused attention on novice and experienced performance of sensorimotor skills. Journal of Experimental Psychology, 8, 6–16.Google Scholar
  6. Bernstein, N. I. (1967). The coordination and regulation of movements. Oxford: Pergamon.Google Scholar
  7. Butterfill, S. A., & Sinigaglia, C. (2014). Intention and motor representation in purposive action. Philosophy and Phenomenological Research, 88(1), 119–145.CrossRefGoogle Scholar
  8. Cohen, J. R., & Poldrack, R. A. (2008). Automaticity in motor sequence learning does not impair response inhibition. Psychonomic Bulletin & Review, 15, 105–115.Google Scholar
  9. Cole, K. J., & Abbs, J. H. (1986). Coordination of three-joint digit movements for rapid finger-thumb grasp. Journal of Neurophysiology, 55, 1407–1423.Google Scholar
  10. Deidrichsen, J. (2007). Optimal task-dependent changes of bimanual feedback control and adaptation. Current Biology, 17, 1675–1679.CrossRefGoogle Scholar
  11. Domkin, D., Laczko, J., Jaric, S., Johansson, H., & Latash, M. L. (2002). Structure of joint variability in bimanual pointing tasks. Experimental Brain Research, 143, 11–23.CrossRefGoogle Scholar
  12. Fridland, E. (2013). Problems with intellectualism. Philosophical Studies, 165(3), 879–891.CrossRefGoogle Scholar
  13. Fridland, E. (2014). They’ve lost control: Reflections on skill. Synthese, 91(12), 2729–2750.CrossRefGoogle Scholar
  14. Haith, A., & Krakauer, J. (2013a). Theoretical models of motor control and motor learning. In A. Gollhofer, W. Taube, & J. B. Nielsen (Eds.), Routledge handbook of motor control and motor learning (pp. 1–28). USA: Routledge.Google Scholar
  15. Haith, A., & Krakauer, J. W. (2013b). Model-based and model-free mechanisms of human motor learning. In Progress in motor control (pp. 1–21). New York: Springer.CrossRefGoogle Scholar
  16. Korenberg, A. T., & Ghahramani, Z. (2002). A Bayesian view of motor adaptation. Current Psychology, 21(4–5), 537–564.Google Scholar
  17. Krakauer, J., & Mazzoni, P. (2011). Human sensorimotor learning: adaptation, skill, and beyond. Current Opinion in Neurobiology, 21, 1–9.CrossRefGoogle Scholar
  18. Levy, N. (2015). Embodied savoir-faire: Knowledge-how requires motor representations. Synthese. doi: 10.1007/s11229-015-0956-1.Google Scholar
  19. Liu, D., & Todorov, E. (2007). Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. The Journal of Neuroscience, 27(35), 9354–9368.CrossRefGoogle Scholar
  20. Logan, G. D. (1979). On the use of concurrent memory load to measure attention and automaticity. Journal of Experimental Psychology: Human Perception and Performance, 5, 189–207.Google Scholar
  21. Logan, G. D. (1982). On the ability to inhibit complex movements: A top-signal study of typewriting. Journal of Experimental Psychology: Human Perception and Performance, 8, 778–792.Google Scholar
  22. Logan, G. D. (1983). Time, information, and the various spans in typewriting. In W. E. Cooper (Ed.), Cognitive aspects of skilled typewriting (pp. 197–224). New York: Springer.CrossRefGoogle Scholar
  23. Logan, G. (1985). Skill and automaticity: Relations, implications, and future directions. Canadian Journal of Psychology, 39(2), 367–386.CrossRefGoogle Scholar
  24. Mandelbaum, E. (2014). The automatic and the ballistic: Modularity beyond perceptual processes. Philosophical Psychology, 28(8), 1147–1156.CrossRefGoogle Scholar
  25. Milner, D., & Goodale, M. A. (2006). The visual brain in action. Oxford: Oxford University Press.CrossRefGoogle Scholar
  26. Milner, D., & Goodale, M. A. (2010). Cortical visual systems for perception and action. In N. Gangopadhay, M. Madary, & F. Spicer (Eds.), Perception, action, and consciousness (pp. 71–94). Oxford: Oxford University Press.CrossRefGoogle Scholar
  27. Mylopoulos, M. & Pacherie, E. (2016). Intentions and motor representations: The interface challenge. Review of Philosophy and Psychology. doi: 10.1007/s13164-016-0311-6.Google Scholar
  28. Nagengast, A. J., Braun, D. A., & Wolpert, D. M. (2009). Optimal control predicts human performance on objects with internal degrees of freedom. PLoS Computational Biology, 5(6), e1000419. doi: 10.1371/journal.pcbi.1000419.CrossRefGoogle Scholar
  29. Papineau, D. (2013). In the zone. Royal Institute of Philosophy Supplement, 73, 175–196.CrossRefGoogle Scholar
  30. Pavese, C. (2013). The unity and scope of knowledge. Dissertation, Rutgers University.Google Scholar
  31. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (Ed.), Information processing and cognition: The Loyola symposium (pp. 153–175). NJ: Erlbaum.Google Scholar
  32. Scholz, J. P., & Schoner, G. (1999). The uncontrolled manifold concept: identifying control variables for a functional task. Experimental Brain Research, 126, 289–306.CrossRefGoogle Scholar
  33. Scholz, J. P., Schoner, G., & Latash, M. L. (2000). Identifying the control structure of multijoint coordination during pistol shooting. Experimental Brain Research, 135, 382–404.CrossRefGoogle Scholar
  34. Shepherd, J. (2014). The contours of control. Philosophical Studies, 170(3), 395–411.CrossRefGoogle Scholar
  35. Shepherd, J. (2015). Conscious control over action. Mind and Language, 30(3), 320–344.CrossRefGoogle Scholar
  36. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending and a general theory. Psychological Review, 84(2), 127–190.CrossRefGoogle Scholar
  37. Shmuelof, L., Krakauer, J. W., & Mazzoni, P. (2012). How is a motor skill learned? Change and invariance at the levels of task success and trajectory control. Journal of Neurophysiology, 108(2), 578–594.CrossRefGoogle Scholar
  38. Stanley, J. (2011a). Knowing (how). Noûs, 45(2), 207–238.CrossRefGoogle Scholar
  39. Stanley, J. (2011b). Know how. Oxford: Oxford University Press.CrossRefGoogle Scholar
  40. Stanley, J., & Krakauer, J. (2013). Motor skill depends on knowledge of facts. Frontiers of Human Neuroscience,. doi: 10.3389/fnhum.2013.0050.Google Scholar
  41. Stanley, J., & Williamson, T. (2001). Knowing how. Journal of Philosophy, 98, 411–444.CrossRefGoogle Scholar
  42. Todorov, E. (2004). Optimality principles in sensorimotor control. Nature Neuroscience, 7(9), 907–915.CrossRefGoogle Scholar
  43. Todorov, E., & Jordan, M. I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience, 5(11), 1226–1235.CrossRefGoogle Scholar
  44. Wu, W. (2013). Mental action and the threat of automaticity. In Andy Clark, Julian Kiverstein, & Tillman Vierkant (Eds.), Decomposing the will (pp. 244–261). Oxford: Oxford University Press.CrossRefGoogle Scholar
  45. Yarrow, K., Brown, P., & Krakauer, J. W. (2009). Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nature Reviews Neuroscience, 10, 585–596.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.King’s College LondonStrand, LondonUK

Personalised recommendations