Philosophical Studies

, Volume 174, Issue 5, pp 1163–1190 | Cite as

Aggregating extended preferences

  • Hilary Greaves
  • Harvey LedermanEmail author


An important objection to preference-satisfaction theories of well-being is that they cannot make sense of interpersonal comparisons. A tradition dating back to Harsanyi (J Political Econ 61(5):434, 1953) attempts to solve this problem by appeal to people’s so-called extended preferences. This paper presents a new problem for the extended preferences program, related to Arrow’s celebrated impossibility theorem. We consider three ways in which the extended-preference theorist might avoid this problem, and recommend that she pursue one: developing aggregation rules (for extended preferences) that violate Arrow’s Independence of Irrelevant Alternatives condition.


Interpersonal well-being comparisons Extended preferences Preference-satisfaction theory  Theories of well-being 



We thank Christian List, Teruji Thomas and John Weymark for useful discussions and correspondence.


  1. Adler, M. (2014). Extended preferences and interpersonal comparisons: A new account. Economics and Philosophy, 30(2), 123–162.CrossRefGoogle Scholar
  2. Adler, M. (2012). Well-being and fair distribution: Beyond cost-benefit analysis. Oxford: Oxford University Press.Google Scholar
  3. Adler, M. (forthcoming). Extended preferences. In: M. Adler & M. Fleurbaey (Eds.), Oxford handbook of well-being and public policy. New York: Oxford University Press.Google Scholar
  4. Adler, M. D. (2015). Aggregating moral preferences. Economics and philosophy, 32(2), 283–321.CrossRefGoogle Scholar
  5. Arrow, K. (1963). Social choice and individual values (2nd ed.). New York: Wiley.Google Scholar
  6. Austen-Smith, D., & Banks, J. (2000). Positive political theory I. Michigan: University of Michigan Press.Google Scholar
  7. Brandenburger, A. (2003). On the existence of a “complete” possibility structure. Cognitive Processes and Economic Behavior, 30–34.Google Scholar
  8. Brown, D. (1973). Acyclic choice. Cowles Foundation Discussion Papers 360. Cowles Foundation for Research in Economics, Yale University.Google Scholar
  9. Cotton-Barratt, O., MacAskill, W., & Ord, T. (2014). Normative uncertainty, intertheoretic comparisons, and variance normalisation. Unpublished manuscript.Google Scholar
  10. Fishburn, P. C. (1970). Arrow’s impossibility theorem: Concise proof and infinite voters. Journal of Economic Theory, 2(1), 103–106.CrossRefGoogle Scholar
  11. Fleurbaey, M., & Maniquet, F. (2008a). Fair social orderings. Economic Theory, 34(1), 25–45.CrossRefGoogle Scholar
  12. Fleurbaey, M. (2007). Social choice and just institutions: New perspectives. Economics and Philosophy, 23(1), 15–43.CrossRefGoogle Scholar
  13. Fleurbaey, M., & Maniquet, F. (2008b). Utilitarianism versus fairness in welfare economics. In M. Fleurbaey, M. Salles, & J. Weymark (Eds.), Justice, political liberalism, and utilitarianism (pp. 263–280). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  14. Greaves, H, & Lederman, H. Forthcoming. Extended preferences and interpersonal comparisons of well-being. Philosophy and Phenomenological Research.Google Scholar
  15. Griffin, J. (1986). Well-being: Its meaning, measurement, and moral importance. Oxford: Oxford University Press.Google Scholar
  16. Hammond, P. (1991). Interpersonal comparisons of utility: Why and how they are and should be made. In J. Elster & J. E. Roemer (Eds.), Interpersonal comparisons of well-being (pp. 200–254). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  17. Harsanyi, J. (1955). Cardinal welfare, individualistic ethics, and interpersonal comparisons of utility. Journal of Political Economy, 63(4), 309–321.CrossRefGoogle Scholar
  18. Harsanyi, J. C. (1953). Cardinal utility in welfare economics and in the theory of risk-taking. Journal of Political Economy, 61(5), 434.CrossRefGoogle Scholar
  19. Hausman, D. (1995). The impossibility of interpersonal utility comparisons. Mind, 104(415), 473–490.CrossRefGoogle Scholar
  20. Isbell, J. R. (1959). Absolute games. In A. W. Tucker & R. D. Luce (Eds.), Contributions to the theory of games (Vol. 4, p. 357). Princeton: Princeton University Press.Google Scholar
  21. Jeffrey, R. (1971). On interpersonal utility theory. Journal of Philosophy, 68(20), 647–656.CrossRefGoogle Scholar
  22. Kaplan, D. (1995). A problem in possible-world semantics. Modality, Morality and Belief: Essays in Honor of Ruth Barcan Marcus, 41–52.Google Scholar
  23. Kirman, A. P., & Sondermann, D. (1972). Arrow’s theorem, many agents, and invisible dictators. Journal of Economic Theory, 5(2), 267–277.CrossRefGoogle Scholar
  24. Kripke, S. A. (2011). A puzzle about time and thought. In Philosophical troubles. Oxford: Oxford University Press.Google Scholar
  25. Mongin, P. (1994). Harsanyi’s aggregation theorem: Multi-profile version and unsettled questions. Social Choice and Welfare, 11(4), 331–354.CrossRefGoogle Scholar
  26. Rachels, S. (1998). Counterexamples to the transitivity of ‘better than'. Australasian Journal of Philosophy, 76(1), 71–83.CrossRefGoogle Scholar
  27. Rawls, J. (1999). A theory of justice (revised ed.). Cambridge: Belknapp Press of Harvard University Press.Google Scholar
  28. Schick, F. (1971). Beyond utilitarianism. The Journal of Philosophy, 68(20), 657–666.CrossRefGoogle Scholar
  29. Sen, A. (1986). Social choice theory. In K. D. Arrow & M. D. Intriligator (Eds.), Handbook of mathematical economics (Vol. 3, pp. 1073–1181). Amsterdam: Elsevier.Google Scholar
  30. Sen, A. (1970). Collective choice and social welfare. San Francisco: Holden-Day.Google Scholar
  31. Temkin, L. (1987). Intransitivity and the mere addition paradox. Philosophy and Public Affairs, 16(2), 138–187.Google Scholar
  32. Temkin, L. (2014). Rethinking the good: Moral ideals and the nature of practical reasoning. Oxford: Oxford University Press.Google Scholar
  33. Voorhoeve, A. (2014). Review of Matthew D. Adler: Well-being and fair distribution: Beyond cost-benefit analysis. Social Choice and Welfare, 42(1), 245–54.CrossRefGoogle Scholar
  34. Weymark, J. A. (1984). Arrow’s theorem with social quasi-orderings. Public Choice, 42(3), 235–246.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.University of OxfordOxfordUK
  2. 2.University of PittsburghPittsburghUSA

Personalised recommendations