Phenomenology and the Cognitive Sciences

, Volume 14, Issue 2, pp 349–359 | Cite as

Unreflective actions? complex motor skill acquisition to enhance spatial cognition

Article

Abstract

Cognitive science has recently moved toward action-integrated paradigms to account for some of its most remarkable findings. This novel approach has opened up new venues for the sport sciences. In particular, a large body of literature has investigated the relationship between complex motor practice and cognition, which in the sports domain has mostly concerned the effect of imagery and other forms of mental practice on motor skill acquisition and emotional control. Yet recent evidence indicates that this relationship is bidirectional: motor experience also influences higher cognition, with a broad range of cognitive abilities being impacted in various ways. In this paper, I review the latest research exploring the effect of complex motor practice on spatial cognition. After emphasizing the versatility of processes that are recruited in the acquisition of complex motor skills, I present further experimental evidence to suggest that the process of acquiring new motor skills triggers specific adaptions in the brain, which in turn can be critical in numerous aspects of daily life. Finally, I propose a mechanistic explanation to account for motor-induced improvements, within an embodied framework of cognition.

Keywords

Motor cognition Embodied cognition Spatial ability Complex motor skills Cognitive training Neuroplasticity 

References

  1. Ambrosini, E., Sinigaglia, C., & Costantini, M. (2012). Tie my hands, tie my eyes. Journal of Experimental Psychology. Human Perception and Performance, 38(2), 263–266.CrossRefGoogle Scholar
  2. Amorim, M. A., Isableu, B., & Jarraya, M. (2006). Embodied spatial transformations: “body analogy” for the mental rotation of objects. Journal of Experimental Psychology. General, 135(3), 327–347.CrossRefGoogle Scholar
  3. Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22, 577–600.Google Scholar
  4. Beilock, S. L., Lyons, I. M., Mattarella-Micke, A., Nusbaum, H. C., & Small, S. L. (2008). Sports experience changes the neural processing of action language. Proceedings of the National Academy of Sciences of the United States of America, 105, 13269–13273.CrossRefGoogle Scholar
  5. Borghi, A., Glenberg, A. M., & Kaschak, M. P. (2004). Putting words in perspective. Memory and Cognition, 32(6), 863–873.CrossRefGoogle Scholar
  6. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., et al. (2004). Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron, 42, 323–334.CrossRefGoogle Scholar
  7. Calvo-Merino, B., Grezes, J., Glaser, D. E., Passingham, R. E., & Haggard, P. (2006). Seeing or doing? Influence of visual and motor familiarity on action observation. Current Biology, 16, 1905–1910.CrossRefGoogle Scholar
  8. Chu, M., & Kita, S. (2011). The nature of gestures’ beneficial role in spatial problem solving. Journal of Experimental Psychology. General, 140(1), 102–116.CrossRefGoogle Scholar
  9. Clark, A. (1997). Being there: Putting brain, body and world together again. Cambridge: The MIT Press.Google Scholar
  10. Connell, L. (2007). Representing object colour in language comprehension. Cognition, 102(3), 476–485.CrossRefGoogle Scholar
  11. de Lange, F. P., Roelofs, K., & Toni, I. (2008). Motor imagery: a window into the mechanisms and alterations of the motor system. Cortex, 44(5), 494–506.CrossRefGoogle Scholar
  12. Dietrich, A. (2008). Imaging the imagination: the trouble with motor imagery. Methods, 45(4), 319–324.CrossRefGoogle Scholar
  13. Dijkstra, K., Kaschak, M. P., & Zwaan, R. A. (2007). Body posture facilitates retrieval of autobiographical memories. Cognition, 102(1), 139–149.CrossRefGoogle Scholar
  14. Dijkstra, K., MacMahon, C., & Misirlisoy, M. (2008). The effects of golf expertise and presentation modality on memory for golf and everyday items. Acta Psychologica, 128(2), 298–303.CrossRefGoogle Scholar
  15. Engel, A. K., Maye, A., Kurthen, M., & König, P. (2013). Where’s the action? The pragmatic turn in cognitive science. Trends in Cognitive Science, 17(5), 202–209.CrossRefGoogle Scholar
  16. Fitts, P. M., & Posner, M. I. (1967). Human performance. Oxford: Brooks and Cole.Google Scholar
  17. Flanagan, J. R., & Johansson, R. S. (2003). Action plans used in action observation. Nature, 424, 769–771.CrossRefGoogle Scholar
  18. Furley, P., & Memmert, D. (2010). The role of working memory in sports. International Review of Sport and Exercise Psychology, 3, 171–194.CrossRefGoogle Scholar
  19. Gallant, J. L., Connor, C. E., & Van Essen, D. C. (1998). Neural activity in areas V1, V2 and V4 during free viewing of natural scenes compared to controlled viewing. NeuroReport, 9(9), 2153–2158.CrossRefGoogle Scholar
  20. Gallese, V., & Lakoff, G. (2005). The brain’s concepts: the role of the sensory–motor system in reason and language. Cognitive Neuropsychology, 22(3–4), 455–479.CrossRefGoogle Scholar
  21. Georgopoulos, A. P., & Massey, J. T. (1987). Cognitive spatial-motor processes. 1. The making of movements at various angles form a stimulus direction. Experimental Brain Research, 65, 361–370.CrossRefGoogle Scholar
  22. Glenberg, A. M. (1997). What memory is for. Behavioral and Brain Sciences, 20(1), 1–55.Google Scholar
  23. Glenberg, A. M., & Gallese, V. (2012). Action-based language: a theory of language acquisition, comprehension, and production. Cortex, 48(7), 905–922.CrossRefGoogle Scholar
  24. Glenberg, A. M., & Kaschak, M. P. (2003). The body’s contribution to language. In B. Ross (Ed.), The psychology of learning and motivation (Vol. 43, pp. 93–126) (pp. 93–126). New York: Academic Press.Google Scholar
  25. Güldenpenning, I., Köster, D., Kunde, W., Weigelt, M., & Schack, T. (2011). Motor expertise modulates the unconscious processing of human body postures. Experimental Brain Research, 213(4), 383–391.CrossRefGoogle Scholar
  26. Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. (2000). Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain, 123(1), 65–73.CrossRefGoogle Scholar
  27. Herholz, S. C., & Zatorre, R. J. (2012). Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron, 76(3), 486–502.CrossRefGoogle Scholar
  28. Holt, L. E., & Beilock, S. L. (2006). Expertise and its embodiment: examining the impact of sensorimotor skill expertise on the representation of action-related text. Psychonomic Bulletin & Review, 13(4), 694–701.CrossRefGoogle Scholar
  29. Hyun, J. S., & Luck, S. J. (2007). Visual working memory as the substrate for mental rotation. Psychonomic Bulletin & Review, 14(1), 154–158.CrossRefGoogle Scholar
  30. Inoue, K., Kawashima, R., Satoh, K., Kinomura, S., & Sugiura, M. (2000). A PET study of visuomotor learning under optical rotation. NeuroImage, 516, 505–516.CrossRefGoogle Scholar
  31. Ionta, S., & Blanke, O. (2009). Differential influence of hands posture on mental rotation of hands and feet in left and right handers. Experimental Brain Research, 195, 207–217.CrossRefGoogle Scholar
  32. Ionta, S., Fourkas, A. D., Fiorio, M., & Aglioti, S. M. (2007). The influence of hands posture on mental rotation of hands and feet. Experimental Brain Research, 183(1), 1–7.CrossRefGoogle Scholar
  33. Janczyk, M., Pfister, R., Crognale, M. A., & Kunde, W. (2012). Effective rotations: action effects determine the interplay of mental and manual rotations. Journal of Experimental Psychology. General, 141(3), 489–501.CrossRefGoogle Scholar
  34. Jansen, P., & Dahmen-Zimmer, K. (2012). Effects of cognitive, motor, and karate training on cognitive functioning and emotional well-being of elderly people. Frontiers in Psychology, 3(40), 1–7.Google Scholar
  35. Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14(1), 103–109.CrossRefGoogle Scholar
  36. Jeannerod, M., & Decety, J. (1995). Mental motor imagery: a window into the representational stages of action. Current Opinion in Neurobiology, 5(6), 727–732.CrossRefGoogle Scholar
  37. Jordan, K., Heinze, H. J., Lutz, K., Kanowski, M., & Jancke, L. (2001). Cortical activations during the mental rotation of different visual objects. NeuroImage, 13(1), 143–152.CrossRefGoogle Scholar
  38. Kosslyn, S. M., DiGirolamo, G. J., Thompson, W. L., & Alpert, N. M. (1998). Mental rotation of objects versus hands: neural mechanisms revealed by positron emission tomography. Psychophysiology, 35(2), 151–161.CrossRefGoogle Scholar
  39. Lamm, C., Windischberger, C., Moser, E., & Bauera, H. (2007). The functional role of dorso-lateral premotor cortex during mental rotation: an event-related fMRI study separating cognitive processing steps using a novel task paradigm. NeuroImage, 36, 1374–1386.CrossRefGoogle Scholar
  40. Mazer, J. A., & Gallant, J. L. (2003). Goal-related activity in V4 during free viewing visual search. Evidence for a ventral stream visual salience map. Neuron, 40(6), 1241–1250.CrossRefGoogle Scholar
  41. Memmert, D., & Furley, P. (2007). “I spy with my little eye!”: breadth of attention, inattentional blindness, and tactical decision making in team sports. Journal of Sport and Exercise Psychology, 29(3), 365–381.Google Scholar
  42. Moreau, D. (2012a). The role of motor processes in three-dimensional mental rotation: shaping cognitive processing via sensorimotor experience. Learning and Individual Differences, 22(3), 354–359.CrossRefGoogle Scholar
  43. Moreau, D. (2012b). Training spatial ability: comment on Pietsch and Jansen (2012) and prospective research trends. Learning and Individual Differences, 22(6), 882–883.CrossRefGoogle Scholar
  44. Moreau, D. (2013a). Constraining movement alters the recruitment of motor processes in mental rotation. Experimental Brain Research, 224(3), 447–454.CrossRefGoogle Scholar
  45. Moreau, D. (2013b). Motor expertise modulates movement processing in working memory. Acta Psychologica, 142(3), 356–361.CrossRefGoogle Scholar
  46. Moreau, D., & Conway, A. R. A. (2013). Cognitive enhancement: a comparative review of computerized and athletic training programs. International Review of Sport and Exercise Psychology, 6(1), 155–183.CrossRefGoogle Scholar
  47. Moreau, D., & Conway, A. R. A (2014). The case for an ecological approach to cognitive training. Trends in Cognitive Sciences, 18(7), 334–336.Google Scholar
  48. Moreau, D., Mansy-Dannay, A., Clerc, J., & Guerrien, A. (2011). Spatial ability and motor performance: assessing mental rotation processes in elite and novice athletes. International Journal of Sport Psychology, 42(6), 525–547.Google Scholar
  49. Moreau, D., Clerc, J., Mansy-Dannay, A., & Guerrien, A. (2012). Enhancing spatial ability through sport practice: evidence for an effect of motor training on mental rotation performance. Journal of Individual Differences, 33(2), 83–88.CrossRefGoogle Scholar
  50. Moreau, D., Morrison, A. B., & Conway, A. R. A. (2013). An ecological approach to cognitive enhancement: Complex motor training. Washington: Paper presented at the Association for Psychological Science Annual Convention.Google Scholar
  51. Munzert, J., & Lorey, B. (2013). Motor and visual imagery in sports. In S. Lacey & R. Lawson (Eds.), Multisensory imagery (pp. 319–342). Oxford: Oxford University Press.CrossRefGoogle Scholar
  52. Nezafat, R., Shadmehr, R., & Holcomb, H. H. (2001). Long-term adaptation to dynamics of reaching movements: a PET study. Experimental Brain Research, 140, 66–76.CrossRefGoogle Scholar
  53. Niell, C. M., & Stryker, M. P. (2010). Modulation of visual responses by behavioral state in mouse visual cortex. Neuron, 65(4), 472–479.CrossRefGoogle Scholar
  54. Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: a computationally guided review. Neural Networks, 19(3), 254–271.CrossRefGoogle Scholar
  55. Parsons, L. M. (1987). Imagined spatial transformations of one’s hands and feet. Cognitive Psychology, 19, 178–241.CrossRefGoogle Scholar
  56. Parsons, L. M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology. Human Perception and Performance, 20(4), 709–730.CrossRefGoogle Scholar
  57. Pellizzer, G., & Georgopoulos, A. P. (1993). Common processing constraints for visuomotor and visual mental rotation. Experimental Brain Research, 93, 165–172.CrossRefGoogle Scholar
  58. Pietsch, S., & Jansen, P. (2012). Different mental rotation performance in students of music, sport and education. Learning and Individual Differences, 22(1), 159–163.CrossRefGoogle Scholar
  59. Puttemans, V., Wenderoth, N., & Swinnen, S. P. (2005). Changes in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticity. Journal of Neuroscience, 25, 4270–4278.CrossRefGoogle Scholar
  60. Raab, M., & Johnson, J. G. (2007). Expertise-based differences in search and option-generation strategies. Journal of Experimental Psychology. Applied, 13(3), 158–170.CrossRefGoogle Scholar
  61. Remy, F., Wenderoth, N., Lipkens, K., & Swinnen, S. P. (2008). Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: an fMRI study. Cortex, 44(5), 482–493.CrossRefGoogle Scholar
  62. Richter, W., Somorjai, R., Summers, R., Jarmasz, M., Menon, R. S., Gati, J. S., et al. (2000). Motor area activity during mental rotation studied by time-resolved single-trial fMRI. Journal of Cognitive Neuroscience, 12(2), 310–320.CrossRefGoogle Scholar
  63. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefGoogle Scholar
  64. Schmidt, R. A. (1975). A schema theory of discrete motor skill learning. Psychological Review, 82, 225–260.CrossRefGoogle Scholar
  65. Schmidt, R. A., & Lee, T. A. (1998). Motor control and learning: A behavioral emphasis. Champaign: Human Kinetics.Google Scholar
  66. Schuch, S., Bayliss, A. P., Klein, C., & Tipper, S. P. (2010). Attention modulates motor system activation during action observation: evidence for inhibitory rebound. Experimental Brain Research, 205(2), 235–249.CrossRefGoogle Scholar
  67. Schwartz, D. L., & Holton, D. L. (2000). Tool use and the effect of action on the imagination. Journal of Experimental Psychology. Learning, Memory, and Cognition, 26(6), 1655–1665.CrossRefGoogle Scholar
  68. Sekiyama, K. (1982). Kinesthetic aspects of mental representations in the identification of left and right hands. Perception & Psychophysics, 32, 89–95.CrossRefGoogle Scholar
  69. Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654.CrossRefGoogle Scholar
  70. Skippera, J. I., Nusbauma, H. C., & Smalla, S. L. (2005). Listening to talking faces: motor cortical activation during speech perception. NeuroImage, 25(1), 76–89.CrossRefGoogle Scholar
  71. Smeets, J. B. J., & Brenner, E. (1995). Perception and action are based on the same visual information: distinction between position and velocity. Journal of Experimental Psychology. Human Perception and Performance, 21(1), 19–31.CrossRefGoogle Scholar
  72. Smyth, M. M., & Pendleton, L. R. (1989). Working memory for movements. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 41(2-A), 235–250.CrossRefGoogle Scholar
  73. Smyth, M. M., & Pendleton, L. R. (1990). Space and movement in working memory. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 42(2-A), 291–304.CrossRefGoogle Scholar
  74. Smyth, M. M., & Pendleton, L. R. (1994). Memory for movement in professional ballet dancers. International Journal of Sport Psychology, 25(3), 282–294.Google Scholar
  75. Smyth, M. M., Pearson, N. A., & Pendleton, L. R. (1988). Movement and working memory: patterns and positions in space. The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 40(3-A), 497–514.CrossRefGoogle Scholar
  76. Steggemann, Y., Engbert, K., & Weigelt, M. (2011). Selective effects of motor expertise in mental body rotation tasks: comparing object-based and perspective transformations. Brain and Cognition, 76(1), 97–105.CrossRefGoogle Scholar
  77. Stewart, L., Henson, R., Kampe, K., Walsh, V., Turner, R., & Frith, U. (2003). Brain changes after learning to read and play music. NeuroImage, 20(1), 71–83.CrossRefGoogle Scholar
  78. Stewart, L., Walsh, V., & Frith, U. (2004). Reading music modifies spatial mapping in pianists. Perception and Psychophysics, 66(2), 183–195.CrossRefGoogle Scholar
  79. Tenenbaum, G. (2003). Expert athletes: An integrated approach to decision-making. In J. L. Starkes & K. A. Ericsson (Eds.), Expert performance in sport: Advances in research on sport expertise (pp. 191–218). Champaign: Human Kinetics.Google Scholar
  80. Tracy, J., Flanders, A., Madi, S., Laskas, J., Stoddard, E., Pyrros, A., et al. (2003). Regional brain activation associated with different performance patterns during learning of a complex motor skill. Cerebral Cortex, 13, 904–910.CrossRefGoogle Scholar
  81. Vingerhoets, G., de Lange, F. P., Vandemaele, P., Deblaere, K., & Achten, E. (2002). Motor imagery in mental rotation: an fMRI study. NeuroImage, 17(3), 1623–1633.CrossRefGoogle Scholar
  82. Wexler, M., Kosslyn, S., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68(1), 77–94.CrossRefGoogle Scholar
  83. Wilson, M., & Knoblich, G. (2005). The case for motor involvement in perceiving conspecifics. Psychological Bulletin, 131(3), 460–473.CrossRefGoogle Scholar
  84. Wohlschläger, A., & Wohlschläger, A. (1998). Mental and manual rotation. Journal of Experimental Psychology. Human Perception and Performance, 24, 397–412.CrossRefGoogle Scholar
  85. Wood, J. N. (2007). Visual working memory for observed actions. Journal of Experimental Psychology. General, 136(4), 639–652.CrossRefGoogle Scholar
  86. Wood, J. N. (2011). A core knowledge architecture of visual working memory. Journal of Experimental Psychology. Human Perception and Performance, 37(2), 357–381.CrossRefGoogle Scholar
  87. Wraga, M., Thompson, W. L., Alpert, N. M., & Kosslyn, S. M. (2003). Implicit transfer of motor strategies in mental rotation. Brain and Cognition, 52(2), 135–143.CrossRefGoogle Scholar
  88. Wright, M. J., Bishop, D. T., Jackson, R. C., & Abernethy, B. (2011). Cortical fMRI activation to opponents’ body kinematics in sport-related anticipation: expert-novice differences with normal and point-light video. Neuroscience Letters, 500(3), 216–221.CrossRefGoogle Scholar
  89. Zacks, J. M. (2008). Neuroimaging studies of mental rotation: a meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 1–19.CrossRefGoogle Scholar
  90. Zwaan, R. A., & Taylor, L. J. (2006). Seeing, acting, understanding: motor resonance in language comprehension. Journal of Experimental Psychology. General, 135(1), 1–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Psychology DepartmentPrinceton UniversityPrincetonUSA

Personalised recommendations