The dorsal stream and the visual horizon

Article

Abstract

Today many philosophers of mind accept that the two cortical streams of visual processing in humans can be distinguished in terms of conscious experience. The ventral stream is thought to produce representations that may become conscious, and the dorsal stream is thought to handle unconscious vision for action. Despite a vast literature on the topic of the two streams, there is currently no account of the way in which the relevant empirical evidence could fit with basic Husserlian phenomenology of vision. Here I offer such an account. In this article, I show how the empirical evidence ought to be understood in a way that is informed by phenomenology. The differences in the two streams are better described as differences in spatial and temporal processing. Rather than simply “unconscious,” the dorsal stream can be better described as making a special contribution to what Husserl identified as the visual horizon.

Keywords

Two visual systems Perception Phenomenology 

Notes

Acknowledgments

I am grateful for the helpful comments I received when presenting this material at the Center for Subjectivity Research in Copenhagen in May 2010. My research for this article was supported by a collaborative research project on Consciousness in a Natural and Cultural Context (CONTACT), which was coordinated by the European Science Foundation (ESF).

References

  1. Aglioti, S., Goodale, M. A., & DeSouza, J. F. X. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5, 679–685.CrossRefGoogle Scholar
  2. Aristotle. (1957). On the soul. Parva naturalia. On breath. Cambridge: Harvard University Press. W.S. Hett, translator.Google Scholar
  3. Bar, M. (2003). A cortical mechanism for triggering top-down facilitation in visual object recognition. Journal of Cognitive Neuroscience, 15, 600–609.CrossRefGoogle Scholar
  4. Block, N. (2005). Review of Alva Noë action in perception. Journal of Philosophy, 5, 259–272.Google Scholar
  5. Block, N. (2007). Consciousness, accessibility and the mesh between psychology and neuroscience. The Behavioral and Brain Sciences, 30, 481–548.Google Scholar
  6. Briscoe, R. (2009). Egocentric spatial representation in action and perception. Philosophy and Phenomenological Research, 2, 423–460.CrossRefGoogle Scholar
  7. Brown, L. E., Halpert, B. A., & Goodale, M. A. (2005). Peripheral vision for perception and action. Experimental Brain Research, 165, 97–106.CrossRefGoogle Scholar
  8. Bullier, J. (2001a). Feedback connections and conscious vision. Trends in Cognitive Sciences, 5, 369–370.CrossRefGoogle Scholar
  9. Bullier, J. (2001b). Integrated model of visual processing. Brain Research Reviews, 36, 96–107.CrossRefGoogle Scholar
  10. Callaway, E. M. (2005). Structure and function of parallel pathways in the primate early visual system. The Journal of Physiology, 566, 13–19.CrossRefGoogle Scholar
  11. Carruthers, P. (2005). Consciousness: Essays from a higher order perspective. London: Oxford University Press.Google Scholar
  12. Chalmers, D. (2000). What is a neural correlate of consciousness? In T. Metzinger (Ed.), Neural correlates of consciousness: Empirical and conceptual issues. Cambridge: MIT Press.Google Scholar
  13. Clark, A. (2001). Visual experience and motor action: are the bonds too tight? Philosophical Review, 110, 495–519.Google Scholar
  14. Colby, C. L., Gattas, R., Olson, C. R., & Gross, C. G. (1988). Topographic organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study. The Journal of Comparative Neurology, 269, 392–413.CrossRefGoogle Scholar
  15. Crick, F., & Koch, C. (1998). Consciousness and neuroscience. Cerebral Cortex, 8, 97–107.CrossRefGoogle Scholar
  16. Dacey, D., & Petersen, M. (1992). Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. Proc Natl Acad Sci, 89, 9666–9670.CrossRefGoogle Scholar
  17. Dennett, D. (1991). Consciousness explained. Boston: Little, Brown.Google Scholar
  18. Findlay, J. M., & Gilchrist, I. (2003). Active vision: the psychology of looking and seeing. London: Oxford University Press.Google Scholar
  19. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London—B, 360, 815–836.CrossRefGoogle Scholar
  20. Gallagher, S. (2003). Phenomenology and experimental design. Journal of Consciousness Studies, 10, 85–99.Google Scholar
  21. Gallese, V. (2007). The ‘Conscious’ dorsal stream: Embodied simulation and its role in space and action consciousness awareness. Psyche, 13(1), 1–20.Google Scholar
  22. Gangopadhyay, N., Madary, M., & Spicer, F. (Eds.). (2010). Perception, action, consciousness: Sensorimotor dynamics and two visual systems. London: Oxford University Press.Google Scholar
  23. Goldstein, E. B. (2002). Sensation and perception. Cambridge: Pacific Grove.Google Scholar
  24. Gonzalez, C. L. R., Ganel, T., & Goodale, M. A. (2006). Hemispheric specialization for the visual control of action is independent of handedness. Journal of Neurophysiology, 95, 3496–3501.CrossRefGoogle Scholar
  25. Gonzalez, C. L. R., Ganel, T., Whitwell, R. L., Morrissey, B., & Goodale, M. A. (2008). Practice makes perfect, but only with the right hand: Sensitivity to perceptual illusions with awkward grasps decreases with practice in the right but not the left hand. Neuropsychologia, 46, 624–631.CrossRefGoogle Scholar
  26. Goodale, M. A., Jakobson, L. S., & Keillor, J. M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32, 1159–1178.CrossRefGoogle Scholar
  27. Goodale, M. A., Meenan, J. P., Bülthoff, H., et al. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 4, 604–610.CrossRefGoogle Scholar
  28. Hurley, S. (1998). Consciousness in action. Cambridge: Harvard University Press.Google Scholar
  29. Husserl, E. (1901/1993). Logische Untersuchungen II. Tübingen: Niemeyer.Google Scholar
  30. Husserl, E. (1966). Husserliana XI Analysen zur passiven Synthesis. Den Haag: Martinus Nijhoff; Analyses Concerning Passive and Active Synthesis, trans. A. Steinbock. Dordrecht: Kluwer, 2001.Google Scholar
  31. Husserl, E. (1973). Husserliana XVI Ding und Raum: Vorlesungen 1907. Den Haag: Martinus Nijhoff; Thing and Space, trans. R. Rojcewicz. Dordrecht: Kluwer Academic, 1997.Google Scholar
  32. Husserl, E. (1976). Husserliana III Ideen zu einer reinen Phanomenologie und phanomenologischen Philosophie. Erstes Buch. Den Haag: Martinus Nijhoff.Google Scholar
  33. Husserl, E. (1999). Erfahrung und Urteil Hamburg: Meiner.Google Scholar
  34. Jacob, P., & Jeannerod, M. (2003). Ways of seeing: The scope and limits of visual cognition. London: Oxford University Press.Google Scholar
  35. Króliczak, G., Heard, P., Goodale, M., & Gregory, R. (2006). Dissociation of perception and action unmasked by the hollow-face illusion. Brain Research, 1080(1), 9–16.CrossRefGoogle Scholar
  36. Kveraga, K., Ghuman, A., & Bar, M. (2007). Top-down predictions in the cognitive brain. Brain and Cognition, 65, 145–168.CrossRefGoogle Scholar
  37. Lê, S., Cardebat, D., Boulanouar, K., et al. (2002). Seeing, since childhood, without ventral stream: a behavioral study. Brain, 125, 58–74.CrossRefGoogle Scholar
  38. Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science, 240, 740–749.CrossRefGoogle Scholar
  39. Logothetis, N. (2008). What we can do and what we cannot do with fMRI. Nature, 453, 869–878.CrossRefGoogle Scholar
  40. Madary, M. (forthcoming). Husserl on perceptual constancy. European Journal of Philosophy.Google Scholar
  41. Merigan, W. H., & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? Ann. Rev. Neurosci., 16, 369–402.CrossRefGoogle Scholar
  42. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.Google Scholar
  43. Milner, A. D., & Goodale, M. A. (2005). Sight unseen. Oxford: Oxford University Press.Google Scholar
  44. Milner, A. D., & Goodale, M. A. (2010). Cortical visual systems for perception and action. In N. Gangopadhyay et al. (Eds.), Perception, action, consciousness: sensorimotor dynamics and two visual systems. London: Oxford University Press.Google Scholar
  45. Nassi, J., & Callaway, E. (2006). Multiple circuits relaying primate parallel visual pathways to the middle temporal area. The Journal of Neuroscience, 26, 12789–12798.CrossRefGoogle Scholar
  46. Nassi, J., & Callaway, E. (2009). Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 10, 360–372.CrossRefGoogle Scholar
  47. Noë, A. (2004). Action in perception. Cambridge, MA: MIT Press.Google Scholar
  48. Noë, A., & Thompson, E. (2004). What is a neural correlate of consciousness? Journal of Consciousness Studies, 11, 3–28.Google Scholar
  49. Nowak, L. G., & Bullier, J. (1997). The timing of information transfer in the visual system. In J. H. Kaas, K. L. Rockland, & A. L. Peters (Eds.), Extrastriate visual cortex in primates (pp. 205–241). New York: Plenum Pub Corp pp.Google Scholar
  50. Ogmen, H. (1993). A neural theory of retino-cortical dynamics. Neural Networks, 6, 245–273.CrossRefGoogle Scholar
  51. Ogmen, H., Breitmeyer, B., & Bedell, H. (2006). Dynamics of perceptual epochs probed by dissociation phenomena in masking. In H. Ogmen & B. Breitmeyer (Eds.), The first half second. Cambridge: MIT Press.Google Scholar
  52. Palmer, S. (1999). Vision: From photons to phenomenology. Cambridge: MIT Press.Google Scholar
  53. Pisella, L., Binkofski, F., Lasek, K., Toni, I., & Rossetti, Y. (2006). No double-dissociation between optic ataxia and visual agnosia: multiple sub-streams for multiple visuo-manual integrations. Neuropsychologia, 44, 2734–2748.CrossRefGoogle Scholar
  54. Rao, R. P. N., & Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2, 79–87.CrossRefGoogle Scholar
  55. Rizzolatti, G., Luppino, G., & Matelli, M. (1998). The organization of the cortical motor system: new concepts. Electroencephalography and Clinical Neurophysiology, 106, 283–296.CrossRefGoogle Scholar
  56. Rossetti, Y., Pisella, L., & Vighetto, A. (2003). Optic ataxia revisited: Visually guided action versus immediate visuomotor control. Experimental Brain Research, 153, 171–179.CrossRefGoogle Scholar
  57. Rossetti, Y., Revol, P., McIntosh, R., et al. (2005). Visually guided reaching: Bilateral posterior parietal lesions cause a switch from fast visuomotor to slow cognitive control. Neuropsychologia, 43, 162–177.CrossRefGoogle Scholar
  58. Rossetti, Y., Ota, H., Blangero, A., Vighetto, A., & Pisella, L. (2010). Why does the perception-action functional dichotomy not match the ventral-dorsal streams anatomical segregation: optic ataxia and the function of the dorsal stream. In N. Gangopadhyay et al. (Eds.), Perception, Action, Consciousness: Sensorimotor Dynamics and Two Visual Systems. Oxford: University Press.Google Scholar
  59. Rozzi, S., Calzavara, R., Belmalih, A., Borra, E., Gregoriou, G. G., Matelli, M., et al. (2006). Cortical connections of the inferior parietal cortical convexity of the macaque monkey. Cerebral Cortex, 16, 1389–1417.CrossRefGoogle Scholar
  60. Schellenberg, S. (2008). The situation-dependency of perception. The Journal of Philosophy, 105, 55–84.Google Scholar
  61. Schiller, P., & Logothetis, N. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences, 13, 392–398.CrossRefGoogle Scholar
  62. Silviera, L. C. L., & Perry, V. H. (1991). The topography of magnocellular projecting ganglion cells (m-ganglion cells) in the primate retina. Neuroscience, 40, 217–237.CrossRefGoogle Scholar
  63. Steinbock, A. (1995). Home and beyond: Generative phenomenology after Husserl. Evanston: Northwestern University Press.Google Scholar
  64. Thompson, E. (2007). Mind in life. Cambridge: Harvard University Press.Google Scholar
  65. Van Gulick, R. (2007). What if phenomenal consciousness admits of degrees? The Behavioral and Brain Sciences, 30, 528–529.Google Scholar
  66. Wallhagen, M. (2007). Consciousness and action: Does cognitive science support (mild) epiphenomenalism? The British Journal for the Philosophy of Science, 58, 539–561.CrossRefGoogle Scholar
  67. Zahavi, D. (2010). Naturalized phenomenology. In S. Gallagher & D. Schmicking (Eds.), Handbook of phenomenology and cognitive science. New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Johannes Gutenberg—Universität MainzMainzGermany

Personalised recommendations