Phenomenology and the Cognitive Sciences

, Volume 6, Issue 3, pp 271–291 | Cite as

Mathematizing phenomenology

  • Jeffrey Yoshimi
Regular paper


Husserl is well known for his critique of the “mathematizing tendencies” of modern science, and is particularly emphatic that mathematics and phenomenology are distinct and in some sense incompatible. But Husserl himself uses mathematical methods in phenomenology. In the first half of the paper I give a detailed analysis of this tension, showing how those Husserlian doctrines which seem to speak against application of mathematics to phenomenology do not in fact do so. In the second half of the paper I focus on a particular example of Husserl’s “mathematized phenomenology”: his use of concepts from what is today called dynamical systems theory.


Edmund Husserl Mathematization Dynamical systems theory Formalization Naturalism 


  1. Abraham, Ralph, & Shaw, C. (1982). DynamicsThe geometry of behavior, (4 Volumes). Santa Cruz, CA: Aerial.Google Scholar
  2. Barušs, I. (1989). Categorical modeling of Husserl’s intentionality. Husserl Studies, 6, 25–41.CrossRefGoogle Scholar
  3. Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Science, 4, 91–99.CrossRefGoogle Scholar
  4. Blecksmith, R., & Null, G. (1991). Matrix representation of Husserl’s part-whole-foundation theory. Notre Dame Journal of Formal Logic, 32, 87–111.CrossRefGoogle Scholar
  5. Chokr, N. (1992). Mind, consciousness, and cognition: Phenomenology vs. cognitive science. Husserl Studies, 9, 179–197.CrossRefGoogle Scholar
  6. Da Silva, J. J. (2000). Husserl’s two notions of completeness. Synthese, 125, 417–438.CrossRefGoogle Scholar
  7. Dreyfus, H. (Ed.) (1984). Husserl, intentionality, and cognitive science. Cambridge, MA: MIT.Google Scholar
  8. Fine, K. (1995). Parts and wholes. In: B. Smith, & D. W. Smith (Eds.), The Cambridge companion to Husserl. Cambridge: Cambridge University Press.Google Scholar
  9. Hill, C. O., & Haddock, G. E. R. (Eds.) (2000). Husserl or Frege? Meaning, objectivity, and mathematics. Chicago, IL: Open Court.Google Scholar
  10. Husserl, E. (1960). Cartesian meditations. The Hague: Nijhoff.Google Scholar
  11. Husserl, E. (1962). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. First book: General introduction to a pure phenomenology. New York: Collier.Google Scholar
  12. Husserl, E. (1969). Formal and transcendental logic. The Hague: Nijhoff.Google Scholar
  13. Husserl, E. (1970). The crisis of European sciences and transcendental phenomenology: Introduction to phenomenological philosophy. Evanston, IL: Northwestern University Press.Google Scholar
  14. Husserl, E. (1973a). Logical investigations. London: Routledge and Kegan Paul.Google Scholar
  15. Husserl, E. (1973b). Experience and judgment. Evanston, IL: Northwestern University Press.Google Scholar
  16. Husserl, E. (1975). Phenomenological Psychology. Lectures, summer semester 1925. The Hauge: Nijhoff.Google Scholar
  17. Husserl, E. (1979). Aufsätze und rezensionen (1890–1910). Dordrecht: Springer.Google Scholar
  18. Husserl, E. (1980a). Ideas pertaining to a pure phenomenology and to a phenomenological philosophy. First Book: General introduction to a pure phenomenology. Dordrecht: Springer.Google Scholar
  19. Husserl, E. (1980b). Ideas pertaining to a pure phenomenlogy and to a phenomenological philosophy. Third book: Phenomenology and the foundations of science. Dordrecht: Springer.Google Scholar
  20. Husserl, E. (1981). Shorter works. Notre Dame: University of Notre Dame Press.Google Scholar
  21. Husserl, E. (1983). Studien zur arithmetik und geometrie. Dordrecht: Springer.Google Scholar
  22. Husserl, E. (1991). On the phenomenology of the consciousness of internal time. Dordrecht: Springer.Google Scholar
  23. Husserl, E. (1997a). Thing and space: Lectures of 1907. Dordrecht: Springer.Google Scholar
  24. Husserl, E. (1997b). Psychological and transcendental phenomenology and the confrontation with Heidegger 1927–1931. Dordrecht: Springer.Google Scholar
  25. Husserl, E. (2001a). Die ‘bernauer manuskript’ über das zeitbewußtsein (1917/18). Dordrecht: Springer.Google Scholar
  26. Husserl, E. (2001b). Analyses of passive and active synthesis. Dordrecht: Springer.Google Scholar
  27. Husserl, E. (2003). Philosophy of arithmetic. Dordrecht: Springer.Google Scholar
  28. Krysztofiak, W. (1995). Noemata and their formalization. Synthese, 105, 53–86.CrossRefGoogle Scholar
  29. Majer, U. (1997). Husserl and Hilbert on completeness. Synthese, 110, 37–56.CrossRefGoogle Scholar
  30. Mancosu, P., & Ryckman, T. A. (2002). Mathematics and phenomenology: The correspondence between O. Becker and H. Weyl. Philosophia Mathematica, 10, 102–129.Google Scholar
  31. McIntyhre, R. (1986). Husserl and the representational theory of mind. Topoi, 5, 101–113.CrossRefGoogle Scholar
  32. Mensch, J. R. (1991). Phenomenology and artificial intelligence: Husserl learns Chinese. Husserl Studies, 8, 107–127.CrossRefGoogle Scholar
  33. Miller, I. (1984). Husserl, perception, and temporal awareness. Cambridge, MA: MIT.Google Scholar
  34. Narens, L. (2002). Theories of meaningfulness. Mahwah, NJ: Erlbaum.Google Scholar
  35. Perko, L. (1996). Differential equations and dynamical systems (2nd ed.). New York: Springer.Google Scholar
  36. Petitot, J. (1999). Morphological eidetics for a phenomenology of perception. In F. Varela, et al. (Eds.), Naturalizing phenomenology. Stanford, CA: Stanford University Press.Google Scholar
  37. Petitot, J., Varela, F., Pachoud, B., & Roy J-M. (Eds.) (1999). Naturalizing phenomenology. Stanford, CA: Stanford University Press.Google Scholar
  38. Sharoff, S. (1995). Phenomenology and cognitive science. Stanford Humanities Review, 4, 189–204.Google Scholar
  39. Smith B. (Ed.). (1982). Parts and moments: Studies in logic and formal ontology. Munich: Philosophia Verlag.Google Scholar
  40. Smith, D. W. (2002). Mathematical form in the world. Philosophia mathematica, 10, 102–129.Google Scholar
  41. Smith, D. W., & McIntyre, R. (1982). Husserl and intentionality. Dordrecht: Reidel.Google Scholar
  42. Tieszen, R. (1989). Mathematical intuition: Phenomenology and mathematical knowledge. Dordrecht: Kluwer.Google Scholar
  43. Tieszen, R. (2005). Phenomenology, logic, and the philosophy of mathematics. Cambridge, MI: Cambridge University Press.Google Scholar
  44. Tragesser, R. (1977). Phenomenology and logic. Ithaca, NY: Cornell University Press.Google Scholar
  45. Tragesser, R. (1984). Husserl and realism in logic and mathematics. Cambridge: Cambridge University Press.Google Scholar
  46. Van Gelder T. (1996). Wooden iron? Husserlian phenomenology meets cognitive science. Electronic Journal of Analytic Philosophy 4.Google Scholar
  47. Welton, D. (2000). The other Husserl: The horizons of transcendental phenomenology. Bloomington, IA: Indiana University Press.Google Scholar
  48. Willard, D. (1979). Husserl’s critique of ‘extensional’ logic: A logic that does not understand itself. Idealistic Studies, IX, 142–164.Google Scholar
  49. Willard, D. (1980). Husserl on a logic that failed. The Philosophical Review, 89, 46–64.CrossRefGoogle Scholar
  50. Willard, D. (1984). Logic and the objectivity of knowledge: A study in Husserl’s early philosophy Athens, Ohio: Ohio University Press.Google Scholar
  51. Yoshimi, J. (2001). Dynamics of consciousness: Neuroscience, phenomenology, and dynamical systems theory. Doctoral dissertation: UC Irvine.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  1. 1.School of Social Sciences, Humanities, and ArtsUniversity of CaliforniaMercedUSA

Personalised recommendations