International Journal of Clinical Pharmacy

, Volume 41, Issue 6, pp 1394–1397 | Cite as

Prescriptome analytics: an opportunity for clinical pharmacy

  • Pascal A. Le CorreEmail author


Clinical pharmacists have unique opportunities to be more involved in prescriptome analytics to expand research horizon in clinical pharmacy as an academic discipline. The development of predictive analytics with machine learning algorithms could have the potential to redesign the way we care for patients in our institutions for a more personalized medication therapy.


Clinical data warehouse Clinical pharmacy Machine learning Prescriptome analytics 




Conflicts of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Carter BL. Have we been true to Paul Parker's vision? Paul F. Parker Medal for distinguished service to the profession of pharmacy remarks. J Am Coll Clin Pharm. 2019;2:92–4.CrossRefGoogle Scholar
  2. 2.
    Bouzillé G, Westerlynck R, Defossez G, Bouslimi D, Bayat S, Riou C, et al. Sharing health big data for research: a design by use cases: the INSHARE platform approach. Stud Health Technol Inform. 2017;245:303–7.PubMedGoogle Scholar
  3. 3.
    Cuggia M, Polton D, Wainrib. Health data Hub: mission de prefiguration. Accessed 1 Apr 2019.
  4. 4.
    Shameer K, Perez-Rodriguez MM, Bachar R, Li L, Johnson A, Johnson KW, et al. Pharmacological risk factors associated with hospital readmission rates in a psychiatric cohort identified using prescriptome data mining. BMC Med Inform Decis Mak. 2018;18(Suppl 3):1–11.Google Scholar
  5. 5.
    Hansen PW, Clemmensen L, Sehested TS, Fosbøl EL, Torp-Pedersen C, Køber L, et al. Identifying drug-drug interactions by data mining: a pilot study of warfarin-associated drug interactions. Circ Cardiovasc Qual Outcomes. 2016;9:621–8.CrossRefGoogle Scholar
  6. 6.
    Morival C, Westerlynck R, Bouzillé G, Cuggia M, Le Corre P. Prevalence and nature of statin drug-drug interactions in a university hospital by electronic health record mining. Eur J Clin Pharmacol. 2018;74:525–34.CrossRefGoogle Scholar
  7. 7.
    Hart E, Dunn TE, Feuerstein S, Jacobs DM. Proton pump inhibitors and risk of acute and chronic kidney disease: a retrospective cohort study. Pharmacotherapy. 2019;39:443–53.CrossRefGoogle Scholar
  8. 8.
    Baro E, Degoul S, Beuscart R, Chazard E. Toward a literature-driven definition of big data in healthcare. Biomed Res Int. 2015;2:1–9.CrossRefGoogle Scholar
  9. 9.
    Shameer K, Johnson KW, Yahi A, Miotto R, Li LI, Ricks D, et al. Predictive modeling of hospital readmission rates using electronic medical record-wide machine learning: a case-study using mount sinai heart failure cohort. Pac Symp Biocomput. 2017;22:276–87.PubMedGoogle Scholar
  10. 10.
    Lo-Ciganic WH, Huang JL, Zhang HH, Weiss JC, Wu Y, Kwoh CK, et al. Evaluation of machine-learning algorithms for predicting opioid overdose risk among medicare beneficiaries with opioid prescriptions. JAMA Netw Open. 2019;2:1–15.CrossRefGoogle Scholar
  11. 11.
    Adam TJ, Chi CL. Big data cohort extraction for personalized statin treatment and machine learning. Methods Mol Biol. 2019;1939:255–72.CrossRefGoogle Scholar
  12. 12.
    Fröhlich H, Balling R, Beerenwinkel N, Kohlbacher O, Kumar S, Lengauer T, et al. From hype to reality: data science enabling personalized medicine. BMC Med. 2018;16(1):150–65.CrossRefGoogle Scholar
  13. 13.
    Winn AN, Neuner JM. Making sure we don't forget the basics when using machine learning. J Natl Cancer Inst. 2019;111(6):529–30.CrossRefGoogle Scholar
  14. 14.
    Mazzocchi F. Could big data be the end of theory in science? A few remarks on the epistemology of data-driven science. EMBO Rep. 2015;16:1250–5.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Pôle Pharmacie, Service Hospitalo-Universitaire de PharmacieCHU de RennesRennesFrance
  2. 2.Laboratoire de Biopharmacie et Pharmacie Clinique, Faculté de PharmacieUniversité de Rennes 1RennesFrance
  3. 3.Univ Rennes, CHU Rennes, Inserm, EHESPIrset - UMR_S 1085RennesFrance

Personalised recommendations