International Journal of Clinical Pharmacy

, Volume 40, Issue 3, pp 520–525 | Cite as

Monitoring of gentamicin serum concentrations in obstetrics and gynaecology patients in Namibia

  • Bonifasius S. SinguEmail author
  • Mwangana Mubita
  • Moses M. Thikukutu
  • Josef K. Mufenda
  • Shonag B. McKenzie
  • Roger K. Verbeeck
Research Article


Background Therapeutic drug monitoring is frequently used to optimize the gentamicin dose. Objective The study investigated whether a 240 mg once daily standard dose achieves the recommended target serum gentamicin concentrations. Setting The prospective, observational study took place in the 2 major public hospitals in Namibia. Method Twenty-nine female patients receiving a standard dose (240 mg gentamicin once daily) participated in the study. Two blood samples were withdrawn to estimate gentamicin pharmacokinetic parameters. Serum creatinine was used to calculate creatinine clearance with the Cockcroft–Gault formula (CLcr), and estimate glomerular filtration rate (eGFR) by the Modified Diet in Renal Disease (MDRD) and Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equations. Main outcome measure The outcome measure was the proportion of patients receiving 240 mg gentamicin once daily having Cmax values above 15 mg/L. Results Total body weight (TBW) and body mass index were highly variable: 43–115 kg, and 17.3–41.3 kg/m2, respectively. The gentamicin dose normalized for TBW (adjusted body weight for obese patients) was relatively low, i.e. 4.2 ± 0.8 mg/kg (mean SD). Gentamicin Cmax was 14.4 ± 4.7 mg/L; only 9 patients (31%) had a Cmax > 15 g/mL. eGFR (MDRD-4) correlated well with CLcr, but eGFR (EPI-CKD) formula showed systematic deviations from CLcr. Conclusions (1) a standard 240 mg dose results in gentamicin Cmax values below 15 mg/L in the majority of the patients, (2) eGFR formulas to estimate kidney function will have to be evaluated for their usefulness in the Namibian patient population.


Gentamicin Gynaecology Kidney function Namibia Obsterics TDM Therapeutic drug monitoring 




Conflicts of interest



  1. 1.
    MacDougall C, Chambers HF. Aminoglycosides. In: Brunton L, Chabner B, Knollman B, editors. Goodman & Gilman’s the pharmacological basis of therapeutics. 12th ed. New York: McGraw-Hill; 2012. p. 1505–20.Google Scholar
  2. 2.
    Lietman PS, Smith CR. Aminoglycoside nephrotoxicity in humans. J Infect Dis. 1983;5(Suppl. 2):S284–92.Google Scholar
  3. 3.
    Guthrie OW. Aminoglycoside-induced ototoxicity. Toxicology. 2008;249:91–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Noone P, Parsons TMC, Pattison JR, Slack RC, Garfield-Davies D, Hughes K. Experience in monitoring gentamicin therapy during treatment of serious gram-negative sepsis. Br Med J. 1974;5906:477–81.CrossRefGoogle Scholar
  5. 5.
    Barza M, Lauermann M. Why monitor serum levels of gentamicin? Clin Pharmacokinet. 1978;3:202–15.CrossRefPubMedGoogle Scholar
  6. 6.
    Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol. 2011;73:27–36.CrossRefGoogle Scholar
  7. 7.
    Begg EJ, Barclay ML, Duffull SB. A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol. 1995;39:605–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hodiamont CJ, Juffermans NP, Bouman CSC, de Jong MD, Mathôt RA, van Hest RM. Determinants of gentamicin concentrations in critically ill patients: a population pharmacokinetic analysis. Int J Antimicrob Agents. 2017;49:204–11.CrossRefPubMedGoogle Scholar
  9. 9.
    Nicolau DP, Freeman CD, Belliveau PP, Nightingale CH, Ross JW, Quintiliani R. Experience with a once-daily aminoglycoside program administered to 2,184 adult patients. Antimicrob Agents Chemother. 1995;39:650–5.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Barclay ML, Kirkpatrick CM, Begg EJ. Once daily aminoglycoside therapy: is it less toxic than multiple daily doses and how should it be monitored. Clin Pharmacokinet. 1999;36:89–98.CrossRefPubMedGoogle Scholar
  11. 11.
    Sawchuk RJ, Zaske DE, Cipolle RJ, Wargin WA, Strate RG. Kinetic model for gentamicin dosing with the use of individual patient parameters. Clin Pharmacol Ther. 1977;21:362–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.CrossRefPubMedGoogle Scholar
  13. 13.
    Green B, Duffull SB. What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol. 2004;58:119–33.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the Modification of Diet in Renal Disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145:247–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sagwa EL, Nunurai R, Mavhunga F, Rennie T, Leufkens HGM, Mantel-Teeuwisse AK. Comparing amikacin and kanamycin-induced hearing loss in multidrug-resistant tuberculosis treatment under programmatic conditions in a Namibian retrospective cohort. BMC Pharmacol Toxicol. 2016;16:36.CrossRefGoogle Scholar
  17. 17.
    Workowski KA, Bolan GA. Sexually transmitted diseases treatment guidelines, 2015. MMWR Recomm Rep. 2015;64:1–137.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Triggs E, Charles B. Pharmacokinetics and therapeutic drug monitoring of gentamicin in the elderly. Clin Pharmacokinet. 1999;37:331–41.CrossRefPubMedGoogle Scholar
  19. 19.
    Kirkpatrick CM, Duffull SB, Begg EJ. Pharmacokinetics of gentamicin in 957 patients with varying renal function dosed once daily. Br J Clin Pharmacol. 1999;47:637–43.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Levey AS, Inker LA. Assessment of glomerular filtration rate in health and disease: a state of the art review. Clin Pharmacol Ther. 2017;102:405–19.CrossRefPubMedGoogle Scholar
  21. 21.
    Grub A. Cystatin C- and creatinine-based GFR-prediction equations for children and adults. Clin Biochem. 2011;44:501–2.CrossRefGoogle Scholar
  22. 22.
    Glaser N, Deckert A, Phiri S, Rothenbacher D, Neuhann F. Comparison of various equations for estimating GFR in Malawi: how to determine renal function in resource limited settings? PLoS ONE. 2015;10:.e01304.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PharmacyUniversity of NamibiaWindhoekNamibia
  2. 2.Windhoek Central Hospital and Katutura Intermediate Referral HospitalWindhoekNamibia

Personalised recommendations