International Journal of Clinical Pharmacy

, Volume 40, Issue 5, pp 1225–1233 | Cite as

Impact of a clinical decision support system for drug dosage in patients with renal failure

  • Sophie Desmedt
  • Anne Spinewine
  • Michel Jadoul
  • Séverine Henrard
  • Dominique Wouters
  • Olivia DalleurEmail author
Research Article


Background A clinical decision support system (CDSS) linked to the computerized physician order entry may help improve prescription appropriateness in inpatients with renal insufficiency. Objective To evaluate the impact on prescription appropriateness of a CDSS prescriber alert for 85 drugs in renal failure patients. Setting Before-after study in a 975-bed academic hospital. Method Prescriptions of patients with renal failure were reviewed during two comparable periods of 6 days each, before and after the implementation of the CDSS (September 2009 and 2010). Main outcome measure The proportion of inappropriate dosages of 85 drugs included in the CDSS was compared in the pre- and post-implementation group. Results Six hundred and fifteen patients were included in the study (301 in pre- and 314 in post-implementation periods). In the pre- and post-implementation period, respectively 2882 and 3485 prescriptions were evaluated, of which 14.9 and 16.6% triggered an alert. Among these, the dosage was inappropriate in respectively 25.4 and 24.6% of prescriptions in the pre- and post-implementation periods (OR 0.97; 95% CI 0.72–1.29). The most frequently involved drugs were paracetamol, perindopril, tramadol and allopurinol. Conclusion The implementation of a CDSS did not significantly reduce the proportion of inappropriate drug dosages in patients with renal failure. Further research is required to investigate the reasons why prescribers override alerts. Collaboration with clinical pharmacists might improve compliance with the CDSS recommendations.


Prescription alerts Decision support systems Inappropriate prescribing Physician order entry system Medication error Renal insufficiency 



The authors would like to thank M. Demey (IT department) for the development of the CDSS at the Cliniques universitaires Saint-Luc, Brussels, S. Thevelin and V. Mohymont.


No specific funding was received for this research.

Conflicts of interest

None. The authors have no conflicts of interest that are directly relevant to the content of this article.


  1. 1.
    Munar MY, Singh H. Drug dosing adjustments in patients with chronic kidney disease. Am Fam Phys. 2007;75(10):1487–96.Google Scholar
  2. 2.
    Breton G, Froissart M, Janus N, Launay-Vacher V, Berr C, Tzourio C, et al. Inappropriate drug use and mortality in community-dwelling elderly with impaired kidney function—the Three-City population-based study. Nephrol Dial Transpl. 2011;26(9):2852–9.CrossRefGoogle Scholar
  3. 3.
    Blix HS, Viktil KK, Moger TA, Reikvam A. Use of renal risk drugs in hospitalized patients with impaired renal function—an underestimated problem? Nephrol Dial Transpl. 2006;21(11):3164–71.CrossRefGoogle Scholar
  4. 4.
    Roberts GW, Farmer CJ, Cheney PC, Govis SM, Belcher TW, Walsh SA, et al. Clinical decision support implemented with academic detailing improves prescribing of key renally cleared drugs in the hospital setting. J Am Med Inf Assoc (JAMIA). 2010;17(3):308–12.CrossRefGoogle Scholar
  5. 5.
    Hug BL, Witkowski DJ, Sox CM, Keohane CA, Seger DL, Yoon C, et al. Occurrence of adverse, often preventable, events in community hospitals involving nephrotoxic drugs or those excreted by the kidney. Kidney Int. 2009;76(11):1192–8.CrossRefGoogle Scholar
  6. 6.
    Pillans PI, Landsberg PG, Fleming AM, Fanning M, Sturtevant JM. Evaluation of dosage adjustment in patients with renal impairment. Intern Med J. 2003;33(1–2):10–3.CrossRefGoogle Scholar
  7. 7.
    Salomon L, Levu S, Deray G, Launay-Vacher V, Brucker G, Ravaud P. Assessing residents’ prescribing behavior in renal impairment. Int J Qual Health Care. 2003;15(3):235–40.CrossRefGoogle Scholar
  8. 8.
    Salomon L, Deray G, Jaudon MC, Chebassier C, Bossi P, Launay-Vacher V, et al. Medication misuse in hospitalized patients with renal impairment. Int J Qual Health Care. 2003;15(4):331–5.CrossRefGoogle Scholar
  9. 9.
    van Dijk EA, Drabbe NR, Kruijtbosch M, De Smet PA. Drug dosage adjustments according to renal function at hospital discharge. Ann Pharmacother. 2006;40(7–8):1254–60.CrossRefGoogle Scholar
  10. 10.
    Chertow GM, Lee J, Kuperman GJ, Burdick E, Horsky J, Seger DL, et al. Guided medication dosing for inpatients with renal insufficiency. J Am Med Assoc (JAMA). 2001;86(22):2839–44.CrossRefGoogle Scholar
  11. 11.
    Aronoff GR, Aronoff JR. Drug prescribing in kidney disease: can’t we do better? Am J Kidney Dis. 2014;63(3):382–3.CrossRefGoogle Scholar
  12. 12.
    Stemer G, Lemmens-Gruber R. Clinical pharmacy activities in chronic kidney disease and end-stage renal disease patients: a systematic literature review. BMC Nephrol. 2014;12:35.CrossRefGoogle Scholar
  13. 13.
    Cabello-Muriel A, Gascon-Canovas JJ, Urbieta-Sanz E, Iniesta-Navalon C. Effectiveness of pharmacist intervention in patients with chronic kidney disease. Int J Clin Pharm. 2014;36(5):896–903.CrossRefGoogle Scholar
  14. 14.
    Nuckols TKS-SC, Smith-Spangler C, Morton SC, Asch SM, Patel VM, Anderson LJ, et al. The effectiveness of computerized order entry at reducing preventable adverse drug events and medication errors in hospital settings: a systematic review and meta-analysis. Syst Rev. 2014;4(3):56.CrossRefGoogle Scholar
  15. 15.
    Terrell KM, Perkins AJ, Hui SL, Callahan CM, Dexter PR, Miller DK. Computerized decision support for medication dosing in renal insufficiency: a randomized, controlled trial. Ann Emerg Med. 2010;56(6):623–9.CrossRefGoogle Scholar
  16. 16.
    Sellier E, Colombet I, Sabatier B, Breton G, Nies J, Zapletal E, et al. Effect of alerts for drug dosage adjustment in inpatients with renal insufficiency. J Am Med Inf Assoc (JAMIA). 2009;16(2):203–10. Scholar
  17. 17.
    SPC. Summary of product characteristics. www.fagg-afmpsbe. Accessed 15 May 2017.
  18. 18.
    Aronoff GR, Bennett WM, Berns JS, Brier ME, Kasbekar N, Mueller BA et al. Drug prescribing in renal failure, dosing guidelines for adults. American College of Physicians. 2007. ISBN: 978-1-930513-76-1.Google Scholar
  19. 19.
    Lacy CF, Armstrong LL, Goldman MP, Lance LL. Drug information handbook. 2009–2010. ISBN 13: 978-1-591952-54-1.Google Scholar
  20. 20.
    Pai MP. Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv Chronic Kidney Dis. 2010;17(5):e53–62.CrossRefGoogle Scholar
  21. 21.
    Verhave JC, Fesler P, Ribstein J, du Cailar G, Mimran A. Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis. 2005;46(2):233–41.CrossRefGoogle Scholar
  22. 22.
    Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P. Predictive performance of the modification of diet in renal disease and cockcroft-gault equations for estimating renal function. J Am Soc Nephrol. 2005;16:763–73.CrossRefGoogle Scholar
  23. 23.
    Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16(1):31–41.CrossRefGoogle Scholar
  24. 24.
    Levey AS, Coresh J, Greene T, Stevens LA, Zhang YL, Hendriksen S, et al. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med. 2006;145(4):247–54.CrossRefGoogle Scholar
  25. 25.
    Helou R. Should we continue to use the Cockcroft–Gault formula? Nephron Clin Pract. 2010;116(3):c172–86.CrossRefGoogle Scholar
  26. 26.
    Stevens LA, Nolin TD, Richardson MM, Feldman HI, Lewis JB, Rodby R, et al. Comparison of drug dosing recommendations based on measured GFR and kidney function estimating equations. Am J Kidney Dis. 2009;54(1):33–42.CrossRefGoogle Scholar
  27. 27.
    Gill J, Malyuk R, Djurdjev O, Levin A. Use of GFR equations to adjust drug doses in an elderly multi-ethnic group—a cautionary tale. Nephrol Dial Transpl. 2007;22(10):2894–9.CrossRefGoogle Scholar
  28. 28.
    Van der Sijs H, Aarts J, Vulto A, Berg M. Overriding of drug safety alerts in computerized physician order entry. J Am Med Inf Assoc (JAMIA). 2006;13:138–47.CrossRefGoogle Scholar
  29. 29.
    Scheepers-Hoeks AM, Grouls RJ, Neef C, Korsten HH. Strategy for implementation and first results of advanced clinical decision support in hospital pharmacy practice. Stud Health Technol Inf. 2009;148:142–8.Google Scholar
  30. 30.
    Judge J, Field TS, DeFlorio M, Laprino J, Auger J, Rochon P, et al. Prescribers’ responses to alerts during medication ordering in the long term care setting. J Am Med Inf Assoc (JAMIA). 2006;13(4):385–90.CrossRefGoogle Scholar
  31. 31.
    Czock D, Konias M, Seidling HM, Kaltschmidt J, Schwenger V, Zeier M, et al. Tailoring of alerts substantially reduces the alert burden in computerized clinical decision support for drugs that should be avoided in patients with renal disease. J Am Med Inf Assoc (JAMIA). 2015;22(4):881–7.CrossRefGoogle Scholar
  32. 32.
    Cho I, Slight SP, Nanji KC, Seger DL, Maniam N, Dykes PC, et al. Understanding physicians’ behavior toward alerts about nephrotoxic medications in outpatients: a cross-sectional analysis. BMC Nephrol. 2014;15:200.CrossRefGoogle Scholar
  33. 33.
    Brown C, Hofer T, Johal A, Thomson R, Nicholl J, Franklin B, et al. An epistemology of patient safety research: a framework for study design and interpretation. Part 2. Study design. Qual Saf Health Care. 2008;17:163–9.CrossRefGoogle Scholar
  34. 34.
    Bertrand J, Genevay S, Saudan P. Traitement de la goutte chez l’insuffisant rénal. Rev Med Suisse. 2011;7:483–9.PubMedGoogle Scholar
  35. 35.
    Melton BL, Zillich AJ, Russell SA, Weiner M, McManus MS, Spina JR, et al. Reducing prescribing errors through creatinine clearance alert redesign. Am J Med. 2015;128(10):1117–25.CrossRefGoogle Scholar
  36. 36.
    Such Díaz A, Saez de la Fuente J, Esteva L, Alañón Pardo A, Barrueco N, Esteban C et al. Drug prescribing in patients with renal impairment optimized by a computer-based, semi-automated system. Int J Clin Pharm. 2013;35(6):1170–7.CrossRefGoogle Scholar
  37. 37.
    Cornu P, Steurbaut S, Sostaric S, Mrhar A, Dupont AG. Performance of a clinical decision support system and of clinical pharmacists in preventing drug-drug interactions on a geriatric ward. Int J Clin Pharm. 2014;36(3):519–25.CrossRefGoogle Scholar
  38. 38.
    Spinewine A, Dhillon S, Mallet L, Tulkens PM, Wilmotte L, Swine C. Implementation of ward-based clinical pharmacy services in Belgium—description of the impact on a geriatric unit. Ann Pharmacother. 2006;40(4):720–8.CrossRefGoogle Scholar
  39. 39.
    Falconnier AD, Haefeli WE, Schoenenberger RA, Surber C, Martin-Facklam M. Drug dosage in patients with renal failure optimized by immediate concurrent feedback. J Gen Intern Med. 2001;16(6):369–75.CrossRefGoogle Scholar
  40. 40.
    Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pharmacy, Cliniques universitaires Saint-LucUniversité catholique de LouvainBrusselsBelgium
  2. 2.Clinical Pharmacy Research Group, Louvain Drug Research InstituteUniversité catholique de LouvainBrusselsBelgium
  3. 3.Centre Hospitalier Universitaire Mont-Godinne-DinantUniversité catholique de LouvainYvoirBelgium
  4. 4.Department of Nephrology, Institut de recherche expérimentale et clinique (IREC), Pôle de Néphrologie, Cliniques universitaires Saint-LucUniversité catholique de LouvainBrusselsBelgium
  5. 5.Institute of Health and Society (IRSS)Université catholique de LouvainBrusselsBelgium

Personalised recommendations