Advertisement

International Journal of Clinical Pharmacy

, Volume 40, Issue 1, pp 175–182 | Cite as

The quick loss of carbapenem susceptibility in Pseudomonas aeruginosa at intensive care units

  • Yamin Zou
  • Jiangping Lian
  • Ying Di
  • Haisheng You
  • Hongping Yao
  • Junhui Liu
  • Yalin DongEmail author
Research Article

Abstract

Background Patients colonized with carbapenem-susceptible Pseudomonas aeruginosa (CSPA) strains upon admission to the intensive care unit (ICU) tend to be quickly followed by detected carbapenem-resistant P. aeruginosa strains after admission. Objective To assess the risk factors associated with the quick loss of carbapenem susceptibility and to identify time threshold of prior antimicrobial exposure for the loss during ICU stay. Setting A tertiary-care teaching hospital with 2560 beds located in the northwest region of China. Method A retrospective observational study was conducted between January 2013 and April 2016 at ICUs. Logistic regression analysis was used to assess risk factors, and receiver operating characteristic (ROC) analyses were constructed to identify the time threshold. Main outcome measure The time threshold and risk factors for the quick loss of carbapenem susceptibility. Results Among the 84 patients with CSPA initially, 32 (38.1%) patients were observed to have a loss of carbapenem susceptibility during ICU stay. Logistic regression analyses showed that previous carbapenem exposure was only independently associated with the loss of carbapenem susceptibility (odds ratio 13.16; 95% CI 3.13–55.24; p < 0.001). The optimal cut-off was 3.5 days on ROC curve, indicating the high risk for loss of susceptibility. Conclusion In order to alleviate selective pressure caused by antipseudomonal carbapenems exposure, continued research is needed to determine the most appropriate carbapenems treatment strategies.

Keywords

Antibiotics resistance Carbapenem China Intensive care Time threshold Treatment strategy 

Notes

Funding

The authors gratefully acknowledge the support by the National Natural Science Foundation of China (Grant Nos. 81473177, 81672954) and Shaanxi Provincial Natural Science Foundation (Grant No. 2016JM8015).

Conflicts of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Nicolau DP, Carmeli Y, Crank CW, Goff DA, Graber CJ, Lima AL, et al. Carbapenem stewardship: does ertapenem affect Pseudomonas susceptibility to other carbapenems? A review of the evidence. Int J Antimicrob Agents. 2012;39:11–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Walkty A, Lagace-Wiens P, Adam H, Baxter M, Karlowsky J, Mulvey MR, et al. Antimicrobial susceptibility of 2906 Pseudomonas aeruginosa clinical isolates obtained from patients in Canadian hospitals over a period of 8 years: results of the Canadian Ward surveillance study (CANWARD), 2008–2015. Diagn Microbiol Infect Dis. 2017;87:60–3.CrossRefPubMedGoogle Scholar
  3. 3.
    Ferreira ML, Dantas RC, Faria AL, Gonçalves IR, Silveira de Brito C, Queiroz LL, et al. Molecular epidemiological survey of the quinolone- and carbapenem-resistant genotype and its association with the type III secretion system in Pseudomonas aeruginosa. J Med Microbiol. 2015;64:262–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Rojo-Bezares B, Estepa V, Cebollada R, de Toro M, Somalo S, Seral C, et al. Carbapenem-resistant Pseudomonas aeruginosa strains from a Spanish hospital: characterization of metallo-β-lactamases, porin OprD and integrons. Int J Med Microbiol. 2014;304:405–14.CrossRefPubMedGoogle Scholar
  5. 5.
    Hong DJ, Bae IK, Jang IH, Jeong SH, Kang HK, Lee K. Epidemiology and characteristics of metallo-β-lactamase-producing Pseudomonas aeruginosa. Infect Chemother. 2015;47:81–97.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Zou YM, Ma Y, Liu JH, Shi J, Fan T, Shan YY, et al. Trends and correlation of antibacterial usage and bacterial resistance: time series analysis for antibacterial stewardship in a Chinese teaching hospital (2009–2013). Eur J Clin Microbiol Infect Dis. 2015;34:795–803.CrossRefPubMedGoogle Scholar
  7. 7.
    Voor In’t Holt AF, Severin JA, Lesaffre EM, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2014;58:2626–37.CrossRefGoogle Scholar
  8. 8.
    Barron MA, Richardson K, Jeffres M, McCollister B. Risk factors and influence of carbapenem exposure on the development of carbapenem resistant Pseudomonas aeruginosa bloodstream infections and infections at sterile sites. Springerplus. 2016;5:755.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Harris AD, Johnson JK, Thom KA, Morgan DJ, McGregor JC, Ajao AO, et al. Risk factors for development of intestinal colonization with imipenem-resistant Pseudomonas aeruginosa in the intensive care unit setting. Infect Control Hosp Epidemiol. 2011;32:719–22.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Patterson JE. Antibiotic utilization: is there an effect on antimicrobial resistance? Chest. 2001;119:426S–30S.CrossRefPubMedGoogle Scholar
  11. 11.
    Safdar N, Maki DG. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, Gram-negative bacilli, Clostridium difficile, and Candida. Ann Intern Med. 2002;136:834–44.CrossRefPubMedGoogle Scholar
  12. 12.
    Kollef MH, Chastre J, Fagon JY, François B, Niederman MS, Rello J, et al. Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care Med. 2014;42:2178–87.CrossRefPubMedGoogle Scholar
  13. 13.
    Cobos-Trigueros N, Solé M, Castro P, Torres JL, Hernández C, Rinaudo M, et al. Acquisition of Pseudomonas aeruginosa and its resistance phenotypes in critically ill medical patients: role of colonization pressure and antibiotic exposure. Crit Care. 2015;19:218.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Riou M, Carbonnelle S, Avrain L, Mesaros N, Pirnay JP, Bilocq F, et al. In vivo development of antimicrobial resistance in Pseudomonas aeruginosa strains isolated from the lower respiratory tract of Intensive Care Unit patients with nosocomial pneumonia and receiving antipseudomonal therapy. Int J Antimicrob Agents. 2010;36:513–22.CrossRefPubMedGoogle Scholar
  15. 15.
    Lipsitch M, Bergstrom CT, Levin BR. The epidemiology of antibiotic resistance in hospitals: paradoxes and prescriptions. Proc Natl Acad Sci. 2000;97:1938–43.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ong DS, Jongerden IP, Buiting AG, Leverstein-van Hall MA, Speelberg B, Kesecioglu J, et al. Antibiotic exposure and resistance development in Pseudomonas aeruginosa and Enterobacter species in intensive care units. Crit Care Med. 2011;39:2458–63.CrossRefPubMedGoogle Scholar
  17. 17.
    Lin KY, Lauderdale TL, Wang JT, Chang SC. Carbapenem-resistant Pseudomonas aeruginosa in Taiwan: prevalence, risk factors, and impact on outcome of infections. J Microbiol Immunol Infect. 2016;49:52–9.CrossRefPubMedGoogle Scholar
  18. 18.
    Fortaleza CM, Freire MP, Filho Dde C, de Carvalho Ramos M. Risk factors for recovery of imipenem- or ceftazidime-resistant Pseudomonas aeruginosa among patients admitted to a teaching hospital in Brazil. Infect Control Hosp Epidemiol. 2006;27:901–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Harris AD, Smith D, Johnson JA, Bradham DD, Roghmann MC. Risk factors for imipenem-resistant Pseudomonas aeruginosa among hospitalized patients. Clin Infect Dis. 2002;34:340–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Gbaguidi-Haore H, Dumartin C, L’Hériteau F, Péfau M, Hocquet D, Rogues AM, et al. Antibiotics involved in the occurrence of antibiotic-resistant bacteria: a nationwide multilevel study suggests differences within antibiotic classes. J Antimicrob Chemother. 2013;68:461–70.CrossRefPubMedGoogle Scholar
  21. 21.
    Onguru P, Erbay A, Bodur H, Baran G, Akinci E, Balaban N, et al. Imipenem-resistant Pseudomonas aeruginosa: risk factors for nosocomial infections. J Korean Med Sci. 2008;23:982–7.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Patel N, McNutt LA, Lodise TP. Relationship between various definitions of prior antibiotic exposure and piperacillin–tazobactam resistance among patients with respiratory tract infections caused by Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52:2933–6.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hyle EP, Gasink LB, Linkin DR. BilkerWB, Lautenbach E. Use of different thresholds of prior antimicrobial use in defining exposure: impact on the association between antimicrobial use and antimicrobial resistance. J Infect. 2007;55:414–8.CrossRefPubMedGoogle Scholar
  24. 24.
    Kmeid JG, Youssef MM, Kanafani ZA, Kanj SS. Combination therapy for Gram-negative bacteria: what is the evidence? Expert Rev Anti Infect Ther. 2013;11:1355–62.CrossRefPubMedGoogle Scholar
  25. 25.
    Louie A, Liu W, VanGuilder M, Neely MN, Schumitzky A, Jelliffe R, et al. Combination treatment with meropenem plus levofloxacin is synergistic against Pseudomonas aeruginosa infection in a murine model of pneumonia. J Infect Dis. 2015;211:1326–33.CrossRefPubMedGoogle Scholar
  26. 26.
    Lima AL, Oliveira PR, Paula AP, Dal-Paz K, Almeida JN Jr, Félix Cda S, et al. Carbapenem stewardship: positive impact on hospital ecology. Braz J Infect Dis. 2011;15:1–5.PubMedGoogle Scholar
  27. 27.
    Carmeli Y, Klarfeld Lidji S, Navon-Venezia S, Schwaber MJ. The effects of group 1 versus group 2 carbapenems on imipenem-resistant Pseudomonas aeruginosa: an ecological study. Diagn Microbiol Infect Dis. 2011;70:367–72.CrossRefPubMedGoogle Scholar
  28. 28.
    Graber CJ, Hutchings C, Dong F, Lee W, Chung JK, Tran T. Changes in antibiotic usage and susceptibility among nosocomial Enterobacteriaceae and Pseudomonas isolates following the introduction of ertapenem to hospital formulary. Epidemiol Infect. 2012;140:115–25.CrossRefPubMedGoogle Scholar
  29. 29.
    Goldstein E, Citron DM, Peraino V, Elgourt T, Meibohm AR, Lu S. Introduction of ertapenem into a hospital formulary: effect on antimicrobial usage and improved in vitro susceptibility of Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2009;53:5122–6.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yamin Zou
    • 1
    • 2
  • Jiangping Lian
    • 3
  • Ying Di
    • 4
  • Haisheng You
    • 1
  • Hongping Yao
    • 1
  • Junhui Liu
    • 5
  • Yalin Dong
    • 1
    Email author
  1. 1.Department of PharmacyThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  2. 2.Department of PharmacyXi’an Jiaotong University HospitalXi’anChina
  3. 3.Department of PharmacyShaanxi Provincial People’s HospitalXi’anChina
  4. 4.Surgical Intensive Care UnitThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina
  5. 5.Department of Clinical LaboratoryThe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’anChina

Personalised recommendations